

150W isolated DC-DC converter

Ultra-wide input and regulated single output

Patent Protection RoHS

FEATURES

- Ultra-wide 4:1 input voltage range
- High efficiency up to 89%
- I/O isolation test voltage: 2250VDC
- Operating ambient temperature range -40°C to

+85℃

Input under-voltage protection, output

over-voltage, over-current, short-circuit protection,

over-temperature protection

- Five-sided metal shielded package
- Industry standard ¼-Brick package and pin-out

SURF2424QB-150W(F/H)R3 of isolated 150W DC-DC product with ultra-wide 4:1 input voltage. It features efficiency up to 89%, 2250VDC input to output isolation, operating ambient temperature of -45°C to +85°C, input under-voltage, output over-voltage, over-current, short-circuit protection, over-temperature protection. The products meet CLASS A of CISPR32/EN55032 EMI standards by adding the recommended external components, and they are widely used in applications such as battery powered systems, industrial controls, electricity, instrumentation, railway, communication and intelligent robotic.

Selection Guide						
	Input Voltag	je (VDC)	Ou	Itput	Full Load	Capacitive
Part No.	Nominal (Range)	Max.®	Voltage (VDC)	Current (A) Max.	Efficiency (%) Min./Typ.	Load (µF) Max.
SURF2424QB-150W(F/H)R3	24 (9-36)	40	24	6.25	87/89	1000

Note: Exceeding the maximum input voltage may cause permanent damage.

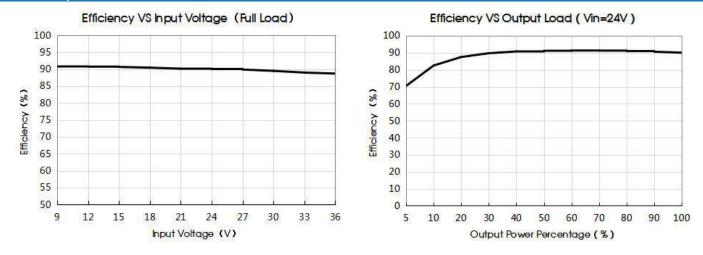
Item	Operating Conditions	Min.	Тур.	Max.	Unit
Input Current (full load/no-load)	Nominal input voltage		7023/100	7184/200	4
Reflected Ripple Current	Nominal input voltage		100		mA
Surge Voltage (1sec. max.)		-0.7		50	
Start-up Voltage				9	VDC
Input Under-voltage Protection		5.5	6.5		
Input Filter			Pi filter		
	Module on	Ctrl open o	Ctrl open circuit or connected to TTL high le (3.5-12VDC)		
Ctrl [®]	Module off	Ctrl pir	Ctrl pin connected to -Vin or low level (0-1.2VDC)		
	Input current when off		2	10	mA
Hot Plug			Unavail	able	

ltem	Operating Conditions	Min.	Тур.	Max.	Unit
Voltage Accuracy			±1	±3	
Linear Regulation	Input voltage variation from low to high at full load		±0.2	±0.5	%
Load Regulation	5%-100% load		±0.5	±l	
Transient Recovery Time			300	500	μs
Transient Response Deviation	25% load step change @25°C			±5	%
Temperature Coefficient	Full load			±0.03	%/ ℃
Ripple & Noise ⁽¹⁾	20MHz bandwidth		150	300	mVp-p
Trim		90		110	
Sense				105	%Vo
Over-voltage Protection		110	130	160	%Vo
im ense Over-voltage Protection Over-current Protection	110	130	150	%lo	
Short-circuit Protection		C	Continuous, s	elf-recovery	,

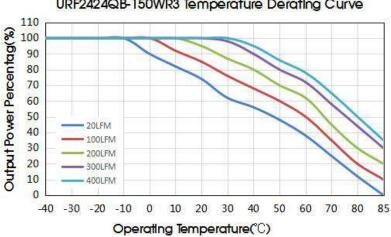
Note: ① The "parallel cable" method is used for ripple and noise test, please see DC-DC Converter Application Notes for specific operation.

General Specification	าร					
Item	Operating Cond	ditions	Min.	Тур.	Max.	Unit
	Input-output		2250			VDC
Isolation	Input-case	Electric Strength Test for 1 minute with a leakage current of 1mA max	1500			
	Output-case		500			
Insulation Resistance	Input-output res	istance at 500VDC	100			MΩ
Isolation Capacitance	Input-output ca	pacitance at 100KHz/0.1V		2200		pF
Switching Frequency	PWM mode			250		KHz
MTBF	MIL-HDBK-217F@	225°C	500			K hours

Environmental Specificat	ions				
Item	Operating Conditions	Min.	Тур.	Max.	Unit
Operating Temperature Range		-40		+85	
Over-temperature Protection	Maximum Temperature of shell surface	95	105	115	
Storage Temperature		-55		+125	°C
Din Soldoring Desistance Tomperature	Wave-soldering, 10 seconds			260	
Pin Soldering Resistance Temperature	Soldering spot is 1.5mm away from case for 10 seconds			300	
Storage Humidity	Non-condensing	5		95	%RH
Shock and Vibration Test IEC/EN61373 - Categ		ategory 1,	Grade B		


Mechan	nical Specification	ns
Case Materi	al	Aluminum alloy case; Black plastic bottom, flame-retardant and heat-resistant (UL94 V-0)
SURF2424QB-150WR3		61.8 x 40.2 x 12.7 mm
Dimension SURF2424QB-150WFR3	62.0 x 56.0 x 14.6 mm	
	SURF2424QB-150WHR3	61.8 x 40.2 x 27.7 mm
	SURF2424QB-150WR3	89g(Тур.)
Weight	SURF2424QB-150WFR3	109g(Тур.)
	SURF2424QB-150WHR3	120g(Тур.)
Cooling Met	hod	Free air convection (20LFM) or forced air convection

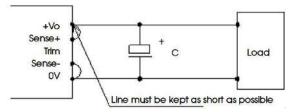
Electron	nagnetic Compo	atibility (EMC)		
	CE	CISPR32/EN55032	CLASS A (see Fig. 2 for recommended circuit)	
Emissions	RE	CISPR32/EN55032	CLASS A (see Fig. 2 for recommended circuit)	
	ESD	IEC/EN61000-4-2	Contact ±6KV Air ±8KV	perf.Criteria B
Immunity	RS	IEC/EN61000-4-3	20V/m	perf.Criteria A


CS	IEC/EN61000-4-6	10 Vr.m.s	perf.Criteria A
EFT	IEC/EN61000-4-4	±2kV 5/50ns 5kHz (see Fig. 2 for recommended circuit)	perf.Criteria A
Surge	IEC/EN61000-4-5	differential mode \pm 1KV, 1.2/50us, source impedance 2 Ω (see Fig. 2 for recommended circuit)	perf.Criteria B

Electron	nagnetic Compc	rtibility (EMC) (EN50155)	
CE	CE	EN50121-3-2 150kHz-500kHz 99dBuV (see Fig. 2 for recommended circuit) EN55016-2-1 500kHz-30MHz 93dBuV	
ETTISSIONS	RE	EN50121-3-2 30MHz-230MHz 40dBuV/m at 10m (see Fig. 2 for recommended circu EN55016-2-1 230MHz-1GHz 47dBuV/m at 10m	uit)
	ESD	EN50121-3-2 Contact ±6KV Air ±8KV	perf.Criteria B
	RS	EN50121-3-2 20V/m	perf.Criteria A
Immunity	CS	EN50121-3-2 0.15MHz-80MHz 10 Vr.m.s	perf.Criteria A
EFT	EFT	EN50121-3-2 ±2kV 5/50ns 5kHz (see Fig. 2 for recommended circuit)	perf.Criteria A
	Surge	EN50121-3-2 line to line ±1KV (42 Ω , 0.5 μ F) (see Fig .6 for recommended circuit)	perf.Criteria B

Efficiency Curves

Typical Performance Curves

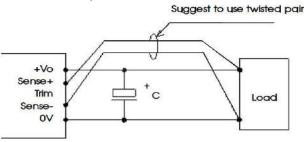

Notes:

(1) Product application thermal design should be referred to the recommended PCB layout and recommended heat dissipation structure, please see DC-DC Converter Application Notes for specific operation.

URF2424QB-150WR3 Temperature Derating Curve

Remote Sense Application

1. Remote Sense Connection if not used



Notes:

(1) If the sense function is not used for remote regulation the user must connect the +Sense to +Vo and -Sense to 0V at the DC-DC converter pins and will compensate for voltage drop across pins only.

(2) The connections between Sense lines and their respective power lines must be kept as short as possible, otherwise they may be picking up noise, interference and/or causing unstable operation of the power module.

2. Remote Sense Connection used for Compensation

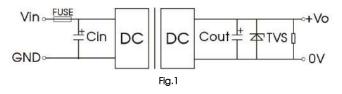
Notes:

(1) Using remote sense with long wires may cause unstable output, please contact technical support if long wires must be used.

(2) PCB-tracks or cables/wires for Remote Sense must be kept as short as possible. Twisted pair or shielded wairs are suggested for remote compensation and must be kept as short as possible.

(3) We recommend using adequate cross section for PCB-track layout and/or cables to connect the power supply module to the load in order to keep the voltage drop below 0.3V and to make sure the power supply's output voltage remains within the specified range.

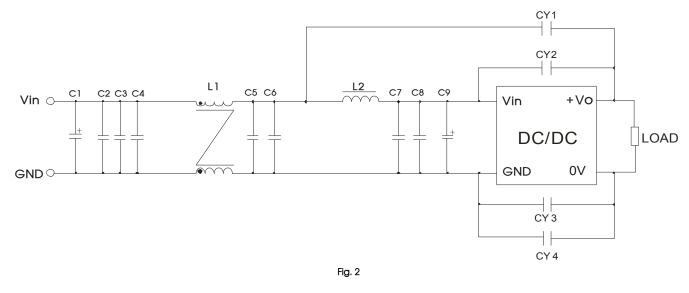
(4) Note that large wire impedance may cause oscillation of the output voltage and/or increased ripple. Consult technical support or factory for further advice of sense operation.


Design Reference

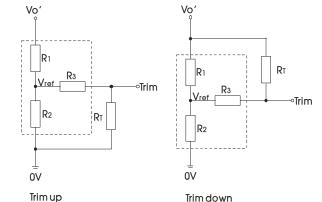
1. Typical application

We recommend using the recommended circuit shown in Fig.1 during product testing and application, otherwise please ensure that at least a 220µF electrolytic capacitors is connected at the input in order to ensure adequate voltage surge suppression and protection.
We recommend increasing the value of Cin and pay attention to the unstable input voltage if the product input side is paralleled with motor drive circuit and/or larger energy transient circuits, to ensure the stability of input terminal and avoid repeatedly start-up problems due to input voltage lower than under-voltage protection point.

(3) We recommend increasing the output capacitance with limited to the capacitive load specification and/or increasing the voltage clamping circuit(such as TVS) if the output terminal is inductive device such as relay or a motor, to ensure adequate voltage surge suppression and protection.


(4) Input and/or output ripple can be further reduced by appropriately increasing the input & output capacitor values Cin and Cout and/or by selecting capacitors with a low ESR (equivalent series resistance). Also make sure that the capacitance is not exceeding the specified max. capacitive load value of the product.

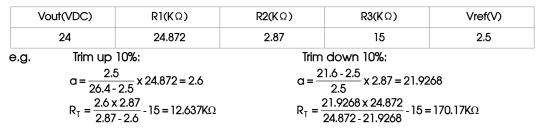
Vout(VDC)	Fuse	Cin®	Cout	TVS
20	20A, slow blow	220µF	100µF	SMDJ28A


Note: ①Please pay attention to the ambient temperature of the product when using an external capacitor, increase the electrolytic capacitor values to at least 1.5 times the original parameter if the ambient temperature is low.

2. EMC solution-recommended circuit

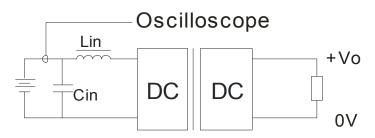
Components	Recommended Component value		
C1	150µF/100V electrolytic capacitor		
С9	47µF/100V electrolytic capacitor		
C2, C3, C4, C5, C6, C7, C8	2.2µF/100V ceramic capacitor		
LI	1.0mH/20A common mode inductance		
L2	1.5µH/20A inductance		
CY1, CY2, CY3, CY4	InFY1 safety capacitor		

3. Trim Function for Output Voltage Adjustment (open if unused)


Calculation formula of Trim resistance:

up:
$$R_{T} = \frac{aR_2}{R_2 - a} - R_3$$
 $a = \frac{Vref}{Vo' - Vref} \cdot R_1$
down: $R_{T} = \frac{aR_1}{R_1 - a} - R_3$ $a = \frac{Vo' - Vref}{Vref} \cdot R_2$

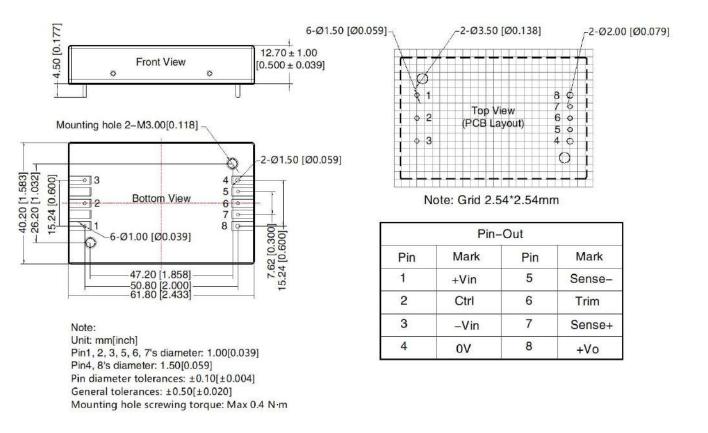
Note:


 $\begin{array}{l} \mbox{Value for R1, R2, R3, and V_{ref} refer to the above table 1. R_{t} Resistance of Trim. a: User-defined parameter, no actual meanings. $Vo': The trim up/down voltage. $ \end{tabular} \end{array}$

TRIM resistor connection (dashed line shows internal resistor network)

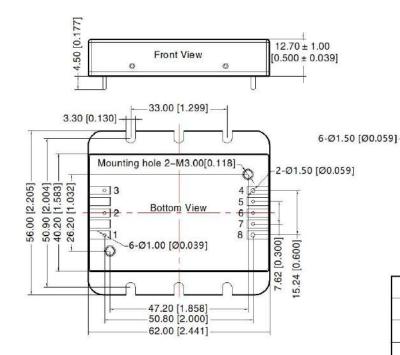
When using the Trim down function make sure that the RT resistor value is calculated correctly. If the Trim pin is shorted with +Vo, or its value is too low, then the output voltage Vo would be lower than 0.9Vo, which may cause the product to fail.

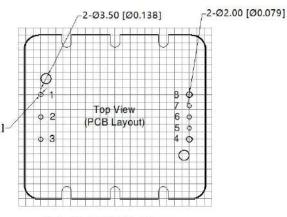
4. Reflected ripple current--test circuit


Note: Lin(4.7 μ H), Cin(220 μ F, ESR<1.0 Ω at 100 KHz)

5. The products do not support parallel connection of their output.

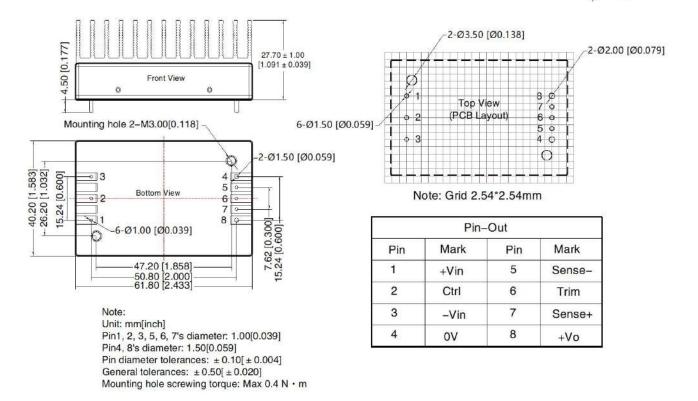
6. The product test process shall ensure that the current of the input terminal meets the requirements of the starting current to ensure that the power supply of the product does not suffer from under-power.


SURF2424QB-150WR3 Dimensions and Recommended Layout


THIRD ANGLE PROJECTION

SURF2424QB-150WFR3 Dimensions and Recommended Layout

THIRD ANGLE PROJECTION


Note: Grid 2.54*2.54mm

	Pin-Out				
Pin	Mark	Pin	Mark		
1	+Vin	5	Sense-		
2	Ctrl	6	Trim		
3	–Vin	7	Sense+		
4	0V	8	+Vo		

Note: Unit: mm[inch] Pin1, 2, 3, 5, 6, 7's diameter: 1.00[0.039]Pin4, 8's diameter: 1.50[0.059]Pin diameter tolerances: $\pm 0.10[\pm 0.004]$ General tolerances: $\pm 0.50[\pm 0.020]$ Mounting hole screwing torque: Max 0.4 N·m

SURF2424QB-150WHR3 Dimensions and Recommended Layout

THIRD ANGLE PROJECTION

Notes:

- 1. The maximum capacitive load offered were tested at input voltage range and full load;
- 2. Unless otherwise specified, parameters in this datasheet were measured under the conditions of Ta=25°C, humidity<75%RH with nominal input voltage and rated output load;
- 3. All index testing methods in this datasheet are based on company corporate standards;
- 4. We can provide product customization service, please contact our technicians directly for specific information;
- 5. Products are related to laws and regulations: see "Features" and "EMC";
- 6. Our products shall be classified according to ISO14001 and related environmental laws and regulations, and shall be handled by qualified units.