High Energy Tantalum Hybrid Capacitor With Mounting Flange - HTHCF Series ### **♦Features:** - All tantalum shell, hermetic seal, lead out in the same direction, polarized, with flange junction structure, easy to install. - 2. The product is a hybrid capacitor composed of tantalum electrolytic capacitors and electrochemical capacitors device, small in size and large in energy storage, it is the first innovative product in China. - Excellent and stable electrical performance, high reliability, long life, high energy density per unit volume. # **♦Specifications:** - 1. Operating Temperature Range: -55°C~ +125°C. For the Derated Design please see guide line on page 4~6 - 2. Capacitance Tolerance: K: ± 10%, M: ± 20% - 3. Storage temperature: -62°C ~ +130 °C ### **◆Electrical Characteristics** Table 1 Rated Voltage, Category Voltage, Surge Voltage, Nominal Capacitance and Main Features | Rated
Voltage(V) | Category
Voltage(V) | Surage
Voltage(V) | Nominal
Capacitance
(µF) | tg δ (%) | ESR (Ω)
1kHz | max(µA) max | | Impedance max (Ω) 100Hz Capacitance Variation(%) | | Dimension
D X H (mm) | Max
Weight
(g) | | |---------------------|------------------------|----------------------|--------------------------------|---------------|-----------------|--------------|----------|--|---------|-------------------------|----------------------|-----| | | | | | | | 25° C | 85℃ 125℃ | -55°C | -55°C | 85° C | | | | | | | 50000 | 180 | 0.05 | 150 | 900 | | -75 | 140 | 35.5×8 | 67 | | | | | 100000 | 180 | 0.035 | 300 | 1800 | 1.0 | -80 | 160 | 35.5×12 | 90 | | 10 | 6 | 11 | 150000 | | 0.025 | 300 | 1000 | | | 100 | 35.5×16 | 115 | | | | | 200000 | 190 | 0.025 | 400 | 1800 | | -80 | 160 | 35.5×20 | 160 | | | | | 230000 | 190 | U.U25 | 400 | 1800 | | -80 | 160 | 35.5×24 | 180 | | | | | 30000 | 160 | 0.05 | 150 | 900 | | -70 | 140 | 35.5×8 | 67 | | | | 17.6 | 60000 | 165 | 0.035 | 200 | 1800 | 1.0 | -80 | 160 | 35.5×12 | 90 | | 16 | 16 9.5 | | 90000 | 100 | 0.025 | 300 | 1800 | | | | 35.5×16 | 115 | | | | | 120000 | 170 | 0.025 | 400 | 400 1800 | | -80 | 160 | 35.5×20 | 160 | | | | | 140000 | | | 400 | | | | | 35.5×24 | 180 | | | | 27.5 | 18000 | 120 | 0.05 | 150 | 900 | | -65 | 120 | 35.5×8 | 67 | | | | | 36000 | 130 | 0.040 | 300 | 1800 | | -75 | 160 | 35.5×12 | 90 | | 25 | 15 | | 54000 | | 0.035 | 300 | 1000 | 1.0 | -/5 | 100 | 35.5×16 | 115 | | | | | 70000 | 140 | 0.025 | 400 | 1800 | | 75 | -75 160 | 35.5×20 | 160 | | | | | 86000 | | 0.023 | 400 | 1000 | | -/5 | | 35.5×24 | 180 | | | | 38.5 | 12000 | 90 | 0.065 | 150 | 900 | | -50 | 120 | 35.5×8 | 67 | | | | | 24000 | 95 300 18 | 0.040 | 200 | 1000 | | -70 160 | 160 | 35.5×12 | 90 | | 35 | 20 | | 36000 | | 1.0 | 1.0 | -/- | 100 | 35.5×16 | 115 | | | | | | | 50000 | 100 | 0.025 | 400 | 1800 | | -70 | 160 | 35.5×20 | 160 | | | | | 60000 | 100 | U.U25 | 400 1800 | 1000 | | -/0 | -/0 100 | 35.5×24 | 180 | | | | | 8000 | 65 | 0.07 | 170 | 1000 | | -40 | 120 | 35.5×8 | 67 | | | 30 | 55 | 16000 | 70 | 0.040 | 400 | 2400 | 1.2 | -55 | 135 | 35.5x 12 | 90 | | 50 | | | 24000 | | 0.035 | 400 | 2400 | | | | 35.5×16 | 115 | | 50 | | | 30000 | 75 | 0.025 | 400 | 1600 | | | | 35.5×20 | 160 | | | | | 32000 | | | | | | -60 | 160 | 35.5×20 | 160 | | | | | 33000 | | | | | | | | 35.5×24 | 180 | Table 1 Rated Voltage, Category Voltage, Surge Voltage, Nominal Capacitance and Main Features | Rated
Voltage(V) | Category
Voltage(V) | Surage
Voltage(V) | Nominal
Capacitance
(µF) | tg δ (%) | ESR (Ω)
1kHz | n | age Current
nax(µA) | Impedance
max (Ω)
100Hz | Capacitance
Variation(%) | | Dimension
D X H (mm) | Max
Weight
(g) | |---------------------|------------------------|----------------------|--------------------------------|-------------------|-----------------|----------|------------------------|-------------------------------|-----------------------------|---------|-------------------------|----------------------| | | | | | | | 25℃ | 85℃ 125℃ | -55°C | -55°C | 85°C | | | | | | | 1800 | 40 | 0.200 | 126 | 1000 | | -20 | 60 | 35.5×8 | 67 | | | | | 4000 | 45 | 0.100 | 170 | 1000 | | -30 | 80 | 00.070 | 01 | | 63 | 38 | 70 | 8000 | 50 | 0.040 | 400 | 2400 | 1.4 | -45 | 90 | 35.5×12 | 90 | | 05 | 30 | " | 12000 | 50 | 0.035 | | 2400 | | 7 | 90 | 35.5×16 | 115 | | | | | 16000 | 55 | 0.035 | 400 | 400 1600 | | -50 | 100 | 35.5×20 | 160 | | | | | 18000 | 33 | 0.033 | 400 | | | -50 | 100 | 35.5×24 | 180 | | | | 88 | 1600 | 20 | 0.150 | 100 | 1000 | | -20
-30 | 60 | 35.5×8 | 70 | | | 80 48 | | 2800 | 40 | 0.100 | 200 | 1200 | | | 80 | | 70 | | 80 | | | 5600 | 40 | 0.060 | 500 | 3000 | 1.6 -40 | -40 | 90 | 35.5×12 | 95 | | 80 48 | 48 | 88 | 8200 | 40 | 0.040 | 500 | 3000 | | | 90 | 35.5×16 | 115 | | | | | 11000 | 45 0.035 | 0.025 | 500 | 2500 | | 40 | 100 | 35.5×20 | 160 | | | | | 13000 | 40 | 0.035 | 500 | 2500 | | -40 | 100 | 35.5×24 | 180 | | | | | 1200 | 35 | 0.125 | 200 | 1200 | 1.8 -25
-30
-30 | -25 | 60 | 35.5×8 | 70 | | | | 110 | 2400 | 35 | 0.080 | 500 | 3000 | | 20 | 80 | 35.5×12 | 95 | | 100 | 60 | | 3600 | 30 | 0.050 | 500 | 3000 | | -30 | 80 | 35.5×16 | 125 | | | | | 4800 | 40 | 0.005 | 500 | 0500 | | | 00 00 | 35.5×20 | 160 | | | | | 6000 | 40 | 0.035 | 500 | 2500 | | -30 | 80 | 35.5×20 | 160 | | | | 121 | 580 | 35 | 0.2 | 200 | 1200 | 2.0 | -20 | 50 | 35.5×8 | 70 | | 110 | 66 | | 1200 | | 0.080 | 500 | 0000 | | -25 | 60 | 35.5×12 | 95 | | | | | 1800 | 35 | 0.075 | 500 | 3000 | | | | 35.5×16 | 125 | | | | 138 | 560 | 35 | 0.2 | 200 | 1200 | | -15 | 50 | 35.5×8 | 70 | | | 75 | | 1100 | 30 0.080
0.075 | 0.080 | 500 | 0000 | | | 50 | 35.5×12 | 95 | | 125 | | | 1600 | | 0.075 | 500 | 3000 | 2.4 | -25 | | 35.5×16 | 125 | | | | | 2200 | | 0.05 | 500 | 0500 | | -25 | 50 | 35.5×20 | 160 | | | | | 2800 | 35 | 35 0.05 | 500 2500 | | -20 | 40 | 35.5×24 | 180 | | Table 2 Rated Voltage, Category Voltage, Surge Voltage, Nominal Capacitance and Main Features | Rated
Voltage(V) | Category
Voltage(V) | Surage
Voltage(V) | - It anacitance I to o | | ESR (Ω)
1kHz | Leakage Current
max(µA) | | Impedance
max (Ω)
100Hz Capacitance
Variation(%) | | Dimension
D X H (mm) | Max
Weight
(g) | | |---------------------|------------------------|----------------------|------------------------|-----|-----------------|----------------------------|----------|--|-------|-------------------------|----------------------|-----| | | | | day. | | | 25℃ | 85℃ 125℃ | -55°C | -55°C | 85℃ | | (3) | | 10 | 6 | 11 | 30000 | 120 | 0.4 | 200 | 1600 | 8 | -70 | 140 | 19×12 | 32 | | 16 | 9.5 | 17.6 | 20000 | 120 | 0.4 | 200 | 1600 | 8 | -70 | 140 | 19×12 | 32 | | 25 | 15 | 27.5 | 12000 | 90 | 0.4 | 200 | 1600 | 8 | -60 | 140 | 19×12 | 32 | | 30 | 18 | 33 | 10000 | 85 | 0.45 | 200 | 1600 | 8 | -60 | 120 | 19×12 | 32 | | 35 | 20 | 38.5 | 8000 | 60 | 0.45 | 150 | 1200 | 8 | -55 | 100 | 19×12 | 32 | | 50 | 30 | 55 | 6000 | 50 | 0.45 | 200 | 1600 | 9.6 | -55 | 90 | 19×12 | 32 | | 63 | 38 | 70 | 3300 | 40 | 0.55 | 200 | 1600 | 11.2 | -30 | 70 | 19×12 | 32 | | 75 | 48 | 82.5 | 2200 | 35 | 0.65 | 160 | 1300 | 12.8 | -25 | 70 | 19×12 | 35 | | 100 | 60 | 110 | 1000 | 35 | 0.85 | 100 | 800 | 14.4 | -20 | 30 | 19×12 | 35 | | 125 | 75 | 138 | 600 | 30 | 1.5 | 75 | 600 | 19.2 | -20 | 30 | 19×12 | 35 | Mounting Dimensional Diagram of HTHCF (Type A) Mounting Dimensional Diagram of HTHCF (Type B) Mounting Dimensional Diagram of HTHCF (Type C) Mounting Dimensional Diagram of HTHCF (Type D) Mounting Dimensional Diagram of HTHCF (Type E) Figure 1 Outline Structure and Mounting Dimensional Diagram - P.S.: 1. It is forbidden to use a multimeter to measure tantalum capacitors regardless of polarity; - 2. The measurement frequency of capacitance and loss tangent is 100Hz, and the measurement method is equivalent series circuit, U_=2.2°-1.0V, U_=1.0°-0.5V (effective value); - 3. When measuring the leakage current at 125°C, please apply a category voltage; the leakage current parameter is a 5-minute reading. - 4. Products with large capacity or special sizes exceeding this standard can be produced through negotiation with our company. # ◆Derated Design guide line: #### 1. Derating Recommendations #### 1.1: The failure rate of tantalum capacitors is for the DC rating (85°C, rated voltage), and varies with usage conditions (ambient temperature, applied voltage, circuit resistance, etc.). In actual circuits, there are often voltage or current peak impulses and ripple currents, or other unexpected electrical impulses, so derating design is necessary in actual use. Only in this way can the safety and reliability of the circuit be #### 1.2: Rated voltage and derated voltage The rated voltage (UR) of tantalum capacitors refers to the maximum DC voltage allowed to be applied to the capacitor at a rated temperature of 85°C. If it is used beyond the rated voltage, the dielectric strength of the dielectric oxide film Ta.0. will be exceeded, which will lead to deterioration of the capacitor performance, and even dielectric breakdown and failure in severe cases. The environment in which the actual circuit is used is very complex, so in the circuit design, derating design is generally adopted. According to the "Component Derating Criteria" standard, the derating levels of tantalum capacitors are divided into 1, \mathbb{I} , and \mathbb{I} ., Class I derating is derated by 50% of the benchmark DC working voltage, class II derating is derated by 60% of the benchmark DC working voltage, and class III derating is derated by 70% of the benchmark DC working voltage. When the ambient temperature is not more than 85°C, the derated reference DC working voltage is the rated voltage (Ur); when the ambient temperature is more than 85°C, the derated reference DC working voltage is the derated voltage specified in this manual for each model (Ur). Uc). In the derating design, non-solid electrolyte tantalum capacitors and conductive polymer electrolyte tantalum capacitors should be derated at least according to level III. When these two types of tantalum capacitors are used in circuits or filter circuits with high reliability requirements, it is recommended that they should be at least level II Derating; solid electrolyte (manganese dioxide) tantalum capacitors are derated at a minimum of 65% of the reference DC working voltage. When this type of tantalum capacitors are used in circuits or filter circuits with high reliability requirements, it is recommended to derate at least according to class I. Under the conditions allowed by the design, the derating range should be increased as much as possible. For tantalum capacitors, the larger the derating range, the higher the reliability. #### 2. Reverse voltage #### 2.1: The rated voltage (UR) of tantalum capacitors refers to the maximum DC voltage allowed to be applied to the capacitor at a rated temperature of 85°C. If it is used beyond the rated voltage, the dielectric strength of the dielectric oxide film Ta.0. will be exceeded, which will lead to deterioration of the capacitor performance, and even dielectric breakdown and failure in severe cases. #### 2.2: In principle, it is forbidden to use a three-meter electrical barrier to test the circuit with tantalum capacitors or the capacitor itself regardless of polarity (it is easy to apply reverse electricity. #### 2.3: In the process of measurement and use, if the tantalum capacitor is accidentally applied to the reverse voltage exceeding the specified value. Even if its electrical parameters are still qualified, the capacitor should be scrapped. Because the quality hidden danger caused by the reverse voltage of the capacitor has a certain latency period, it may not be manifested at that time. # Table 1 Recommended voltage for various types of products | Deady set Type | Savias | Recommended voltage | | | | |---|---|-------------------------|--------------------|--|--| | Product Type | Series | -55°C~85°C | 85°C~125°C | | | | Non-Solid Electrolyte Tantalum
Capacitors (Tantalum Case) | HCAK38,HCAK39,
HCAK39H,HTHC1 etc. | 65%U _R | 42%U _R | | | | Non-solid Electrolyte Tantalum
Capacitors (Silver Case) | HCAK35,HCAK86 etc. | 65%U _R | 42%U _R | | | | MnO. Solid Electrolyte Tantalum Capacitors (Metal Case) | HCAK,HCAK- 1 etc. | (50%-60%)U _R | 40% U _R | | | | Polymer Solid Electrolyte Tantalum Capacitors (Metal Case) | HCAK66 etc. | (50%-60%)U _R | 40% U _R | | | | MnO. Chip Type Solid Electrolytic Tantalum
Capacitor
(Molded Plastic Package) | HCAK45,HCAK45L,
HCAK45U,HCAK45M etc. | 50%U _R | 33%U _R | | | | Chip Polymer Solid Electrolyte Tantalum
Capacitor
(Molded Plastic Package) | HCAK55,HCAK55H etc. | 50%U _R | 33% U _R | | | | MnO. Solid Electrolyte Tantalum Capacitors (Molded Plastic) | HCAK44,HCAK41 etc. | 50%U _R | 33% U _R | | | When the circuit adopts all tantalum capacitors above 35V (including 35V), it should be able to withstand the reverse test of the 1.5V power supply of the three-meter, and the 9V power supply should be absolutely prohibited. ## 3. Influence factors of failure rate ## 3.1: The lower the voltage across the actually added tantalum capacitor is lower than the rated voltage, the lower the failure rate of the tantalum capacitor. The failure rate of tantalum capacitors is evaluated under the maximum allowable load conditions at the rated voltage of 85°C. #### 3.2: Another factor that affects the failure is the series resistance connected to the outer circuit of the capacitor. The greater the resistance in series with the capacitor in the outer circuit circuit, the lower the failure rate. Failure rate grade: 2.0%/1000h is expressed as L; 1.0%/1000h is expressed as M; 0.1%/1000h is expressed as P; 0.01%/1000h is expressed as R, 0.001%/1000h is expressed as S. Table 2 Reverse voltage resistance of various types of products | Product | Туре | Series | Withstand reverse voltage | | | |--|--|---|---|--|--| | | All tantalum capacitors with tantalum case | HCAK38, HCAK39,
HCAK38T etc. | Resistant to 3V reverse voltage | | | | Non-Solid Electrolyte
Tantalum Capacitors | Hybrid Tantalum
Capacitors | HTHC1, HTHC2, HTHC1W,
HCAK36S1, HCAK36S1W etc. | Not resistant to reverse voltage | | | | | Silver case | HCAK35, HCAK35X,
HCAK86, HCAK81 etc. | Not resistant to reverse voltage | | | | Solid Electrolyte Tantalum Cap | acitors | HCAK, HCAK-1, HCAK-8,
HGCA, HGCA411C etc. | Generally, reverse voltage is not allowed, let alone used in pure AC circuits. If it is unavoidable, it is allowed to apply a reverse voltage not greater than the following in a short period of time, and its value is: below 25°C: ≤10%U _R or 1V (whichever is smaller); below 85°C: ≤5%U _R or 0.5V (whichever is smaller); below 125°C: ≤1% U _R or 0.1V (whichever is smaller). Note: If the capacitor needs to work in a circuit with reverse voltage for a long time, please use a bipolar tantalum capacitor, but it can only be used in a DC or pulsating circuit with a low frequency of polarity change. | | | | Polymer Solid Electrolyte Tanta | alum Capacitors | HCAK66 etc. | Not resistant to reverse voltage | | | | Solid Electrolyte Tantalum Cap | acitors | HCAK44, HCAK41 etc. | Not resistant to reverse voltage | | | | Chip Tantalum Solid Electrolyte | e Tantalum Capacitors | HCAK45, HCAK45L, HCAK45U,
HCAK45M etc. | Not resistant to reverse voltage | | | | Chip Polymer Solid Electrolyte | Tantalum Capacitors | HCAK55, HCAK55H etc. | Not resistant to reverse voltage | | | Note: Specification is subject to change without further notice. For more details and updates, please visit our website.