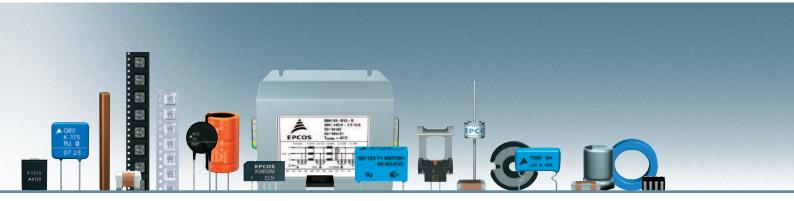





Electronic Components, Modules and Systems

#### Welcome to the World of Electronic




EPCOS is a leading manufacturer of electronic components, modules and systems. Our broad portfolio includes capacitors, inductors and ferrites, EMC filters, sensors and sensor systems, nonlinear resistors, and arresters, as well as SAW and BAW components and RF modules. As an innovative technology-driven company, EPCOS focuses technologically demanding growth markets in the areas of information and communications technology, automotive, industrial, and consumer electronics. We offer our customers both standard components as well as application-specific solutions.

© EPCOS AG 2008

2

#### Components, Modules and Systems.



EPCOS has design, manufacturing and marketing facilities in Europe, Asia and the Americas. We are continuously strengthening our global research and development network by expanding R&D activities at our production locations, primarily in Eastern Europe, China and India. With our global presence we are able to provide our customers with local development and manufacturing know-how and support in the early phases of their projects.

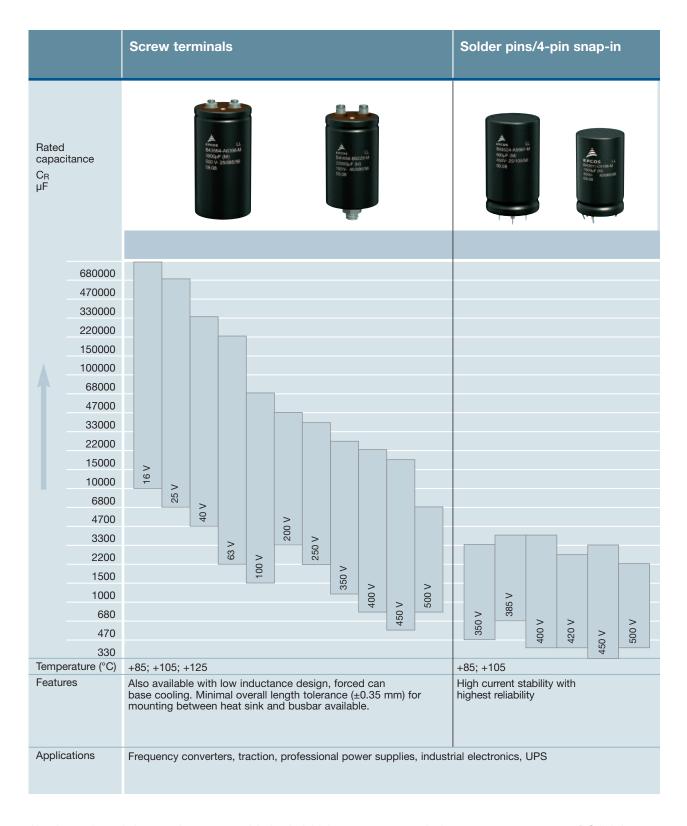
EPCOS is continually improving its processes and thus the quality of its products and services. The Group is ISO/TS 16949 certified and remains committed to constantly reviewing and systematically improving its quality management system.

© EPCOS AG 2008

#### Components, Modules and Systems.

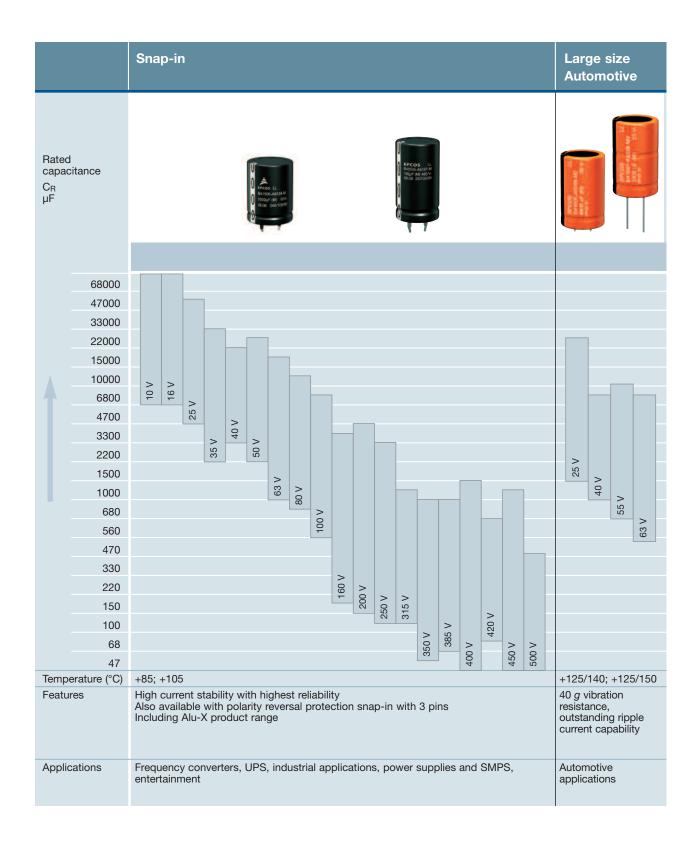


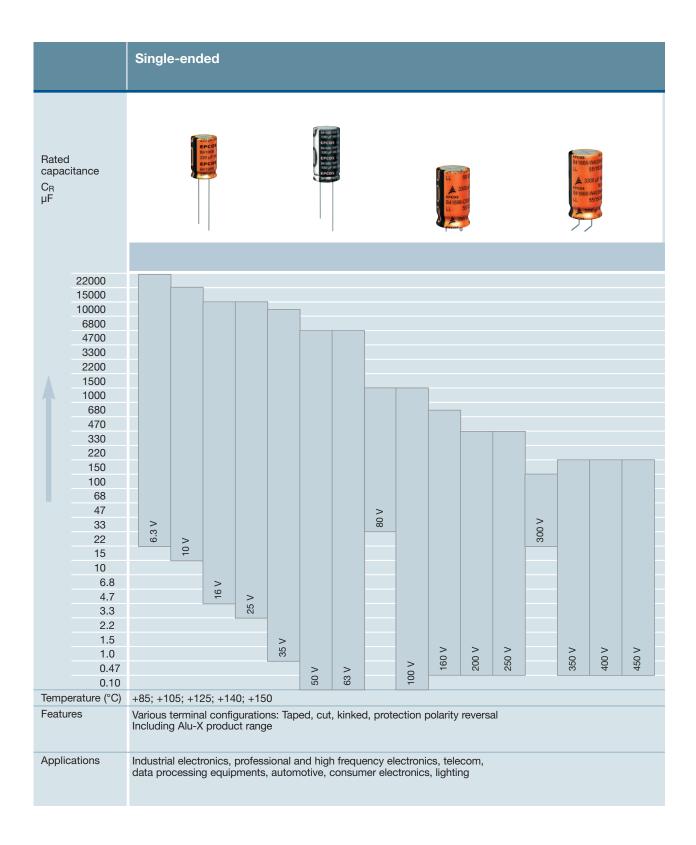
#### Contents

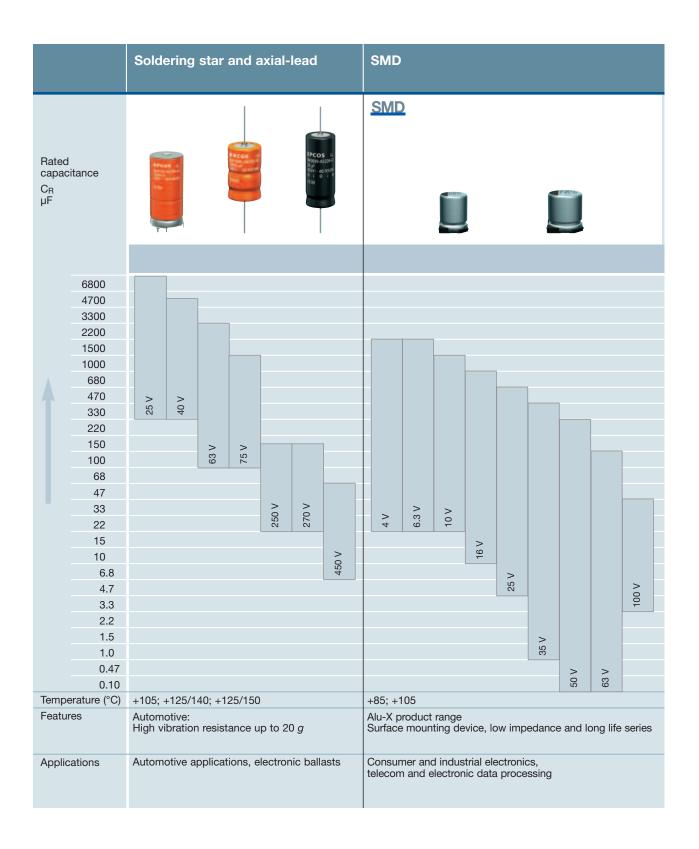

| Capacitors                                |    |
|-------------------------------------------|----|
| Aluminum electrolytic capacitors          | 6  |
| ■ Film capacitors                         | 10 |
| Power capacitors                          | 17 |
| ■ Multilayer ceramic capacitors           | 20 |
| Ferrites                                  |    |
| Ferrite materials                         | 25 |
| Ferrites and accessories                  | 26 |
| Inductors                                 |    |
| ■ SMT inductors                           | 35 |
| ■ SMT power inductors                     | 36 |
| ■ Transponder coils                       | 38 |
| ■ Chokes                                  | 39 |
| ■ Transformers for information technology | 45 |
| ■ Specific transformers and chokes        | 48 |
| EMC filters                               |    |
| ■ EMC feedthrough components              | 49 |
| ■ EMC filters                             | 50 |
| ■ EMC filters for shielded rooms          | 51 |
| ■ EMC services                            | 52 |
| Arresters                                 |    |
| ■ Surge arresters                         | 53 |
| Switching spark gaps                      | 56 |

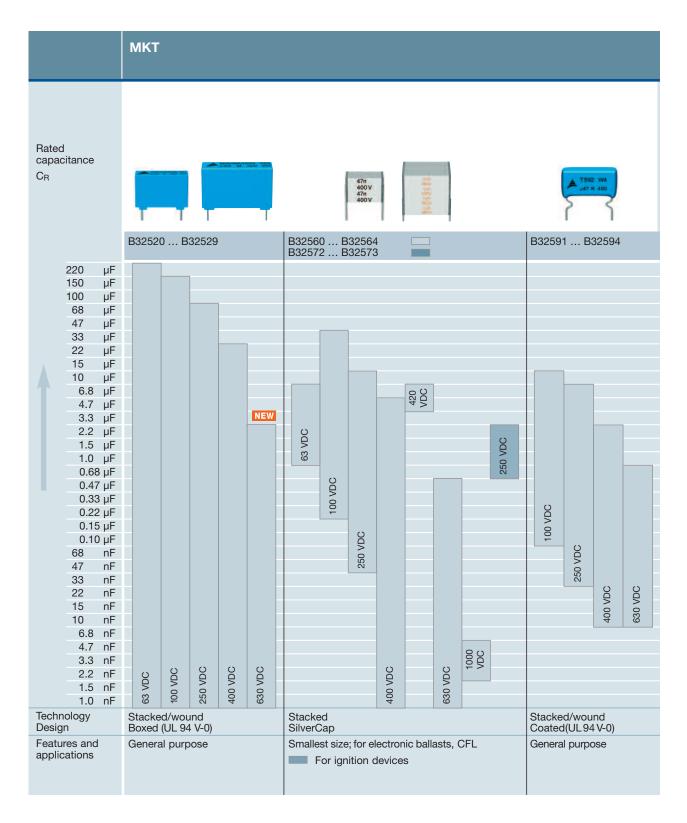
#### Solutions by EPCOS.




| Nonlinear resistors                                  |    |
|------------------------------------------------------|----|
| ■ CeraDiodes                                         | 57 |
| Ceramic transient voltage suppressors (CTVS)         | 58 |
| ■ Inrush current limiters (ICL)                      | 59 |
| ■ Metal oxide varistors                              | 60 |
| ■ PTC thermistors                                    | 62 |
| Sensors                                              |    |
| ■ NTC sensors                                        | 64 |
| Pressure sensors and transmitters                    | 67 |
| Piezo components                                     |    |
| ■ Multilayer piezo actuators                         | 69 |
| Surface acoustic wave components                     |    |
| Filters and duplexers for mobile communications (RF) | 70 |
| Filters for infrastructure systems                   | 71 |
| Filters for multimedia applications                  | 72 |
| Remote-control and other automotive applications     | 74 |
| RF modules                                           |    |
| ■ Modules for mobile communications                  | 75 |
| Subject index                                        | 76 |
| Important notes                                      | 78 |
| Addresses                                            | 79 |

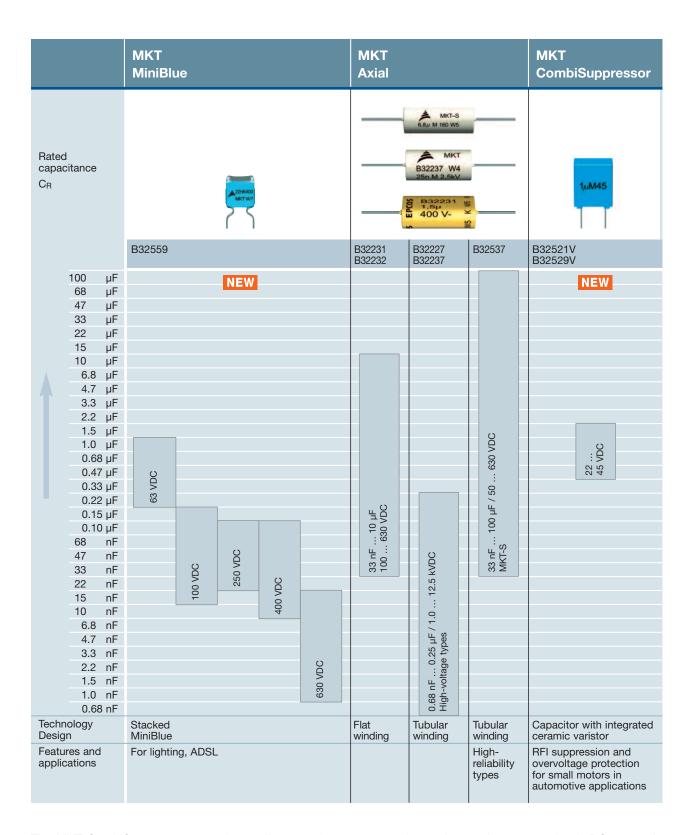

© EPCOS AG 2008 5





Aluminum electrolytic capacitors are notable for their high capacitance per unit volume (CV product) and excellent current handling capability. Therefore they are essential

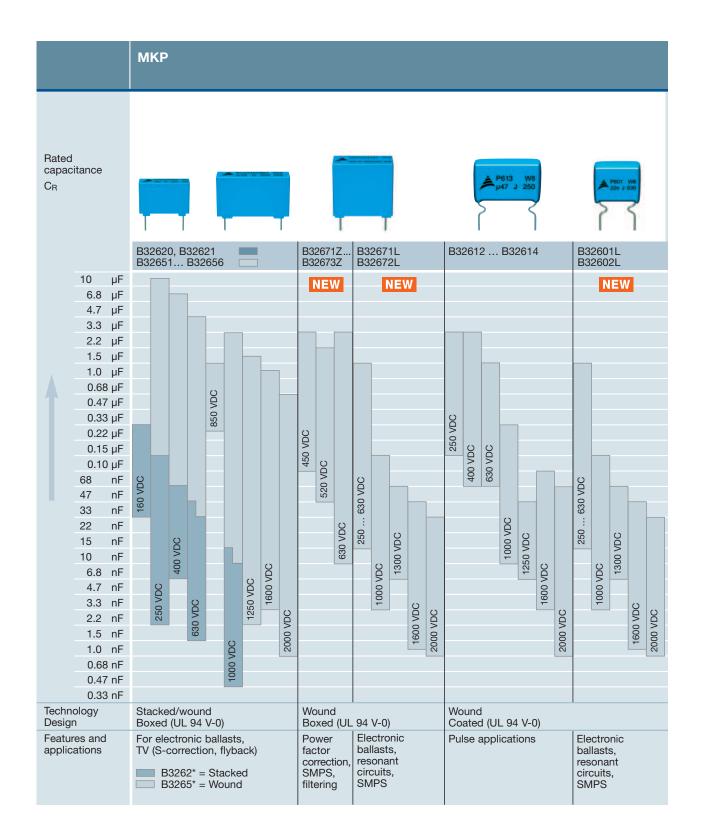
components in frequency converters, as DC link in traction, in UPS and SMPS, in electronic lamp ballasts, automotive and studio flash applications.

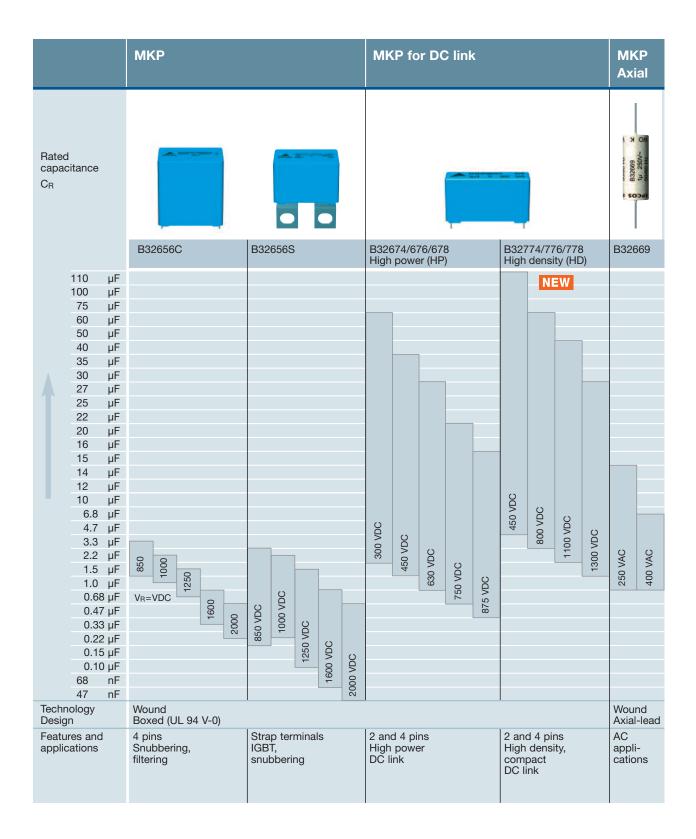


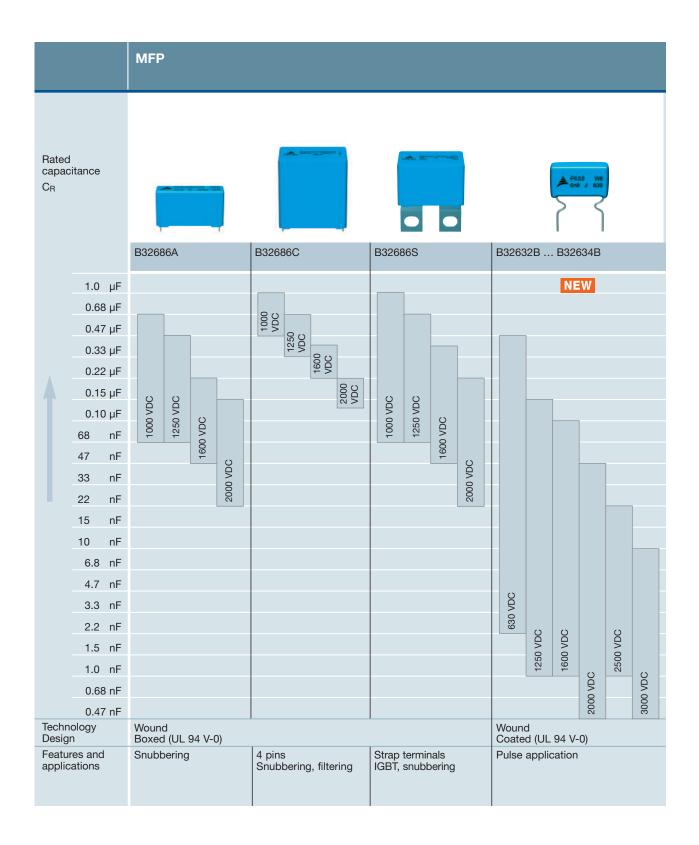


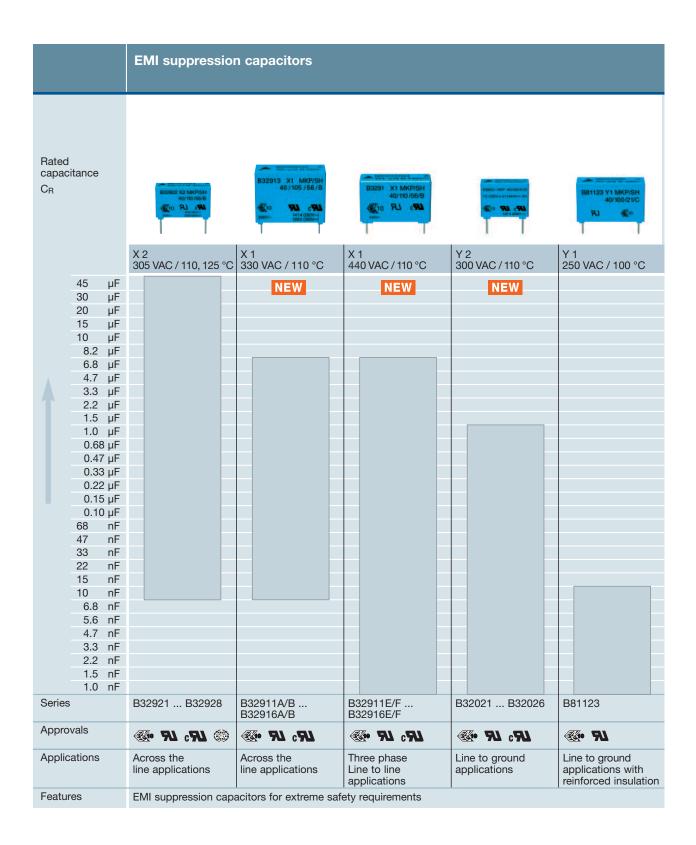






Metallized film capacitors have almost unlimited self-healing capability. Short circuits are thus largely nonexistent. They exhibit high pulse handling and ripple current capability together with long life time. Typical


applications are ADSL, televisions, automobiles, PCs, lamp ballasts and power applications like UPS, power drives, inverters, etc.



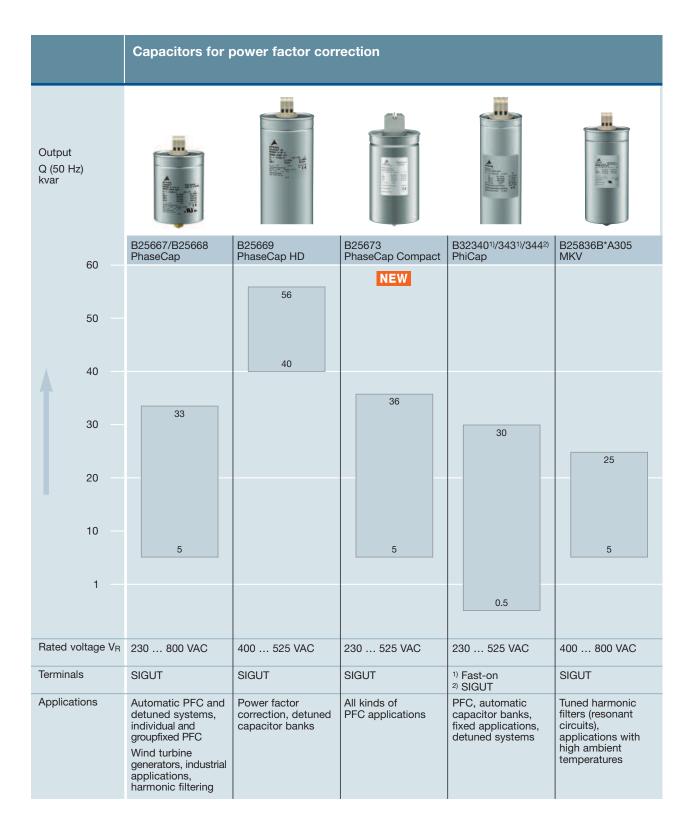


The MKT CombiSuppressor comprises a film capacitor and a multilayer ceramic varistor connected in parallel in a plastic case. This is a space-saving solution for EMI

suppression and overvoltage protection in DC motors in motor vehicles.



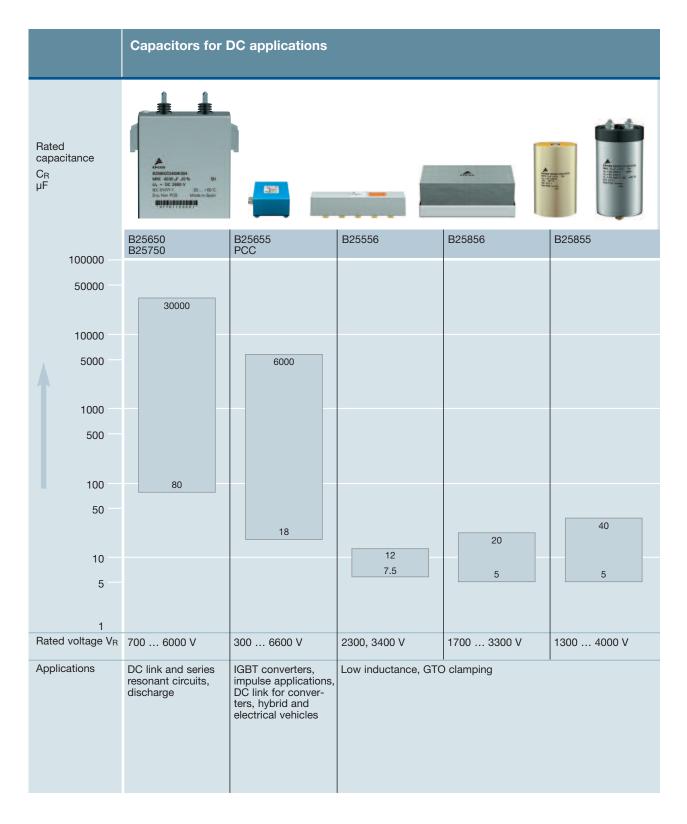









Motor run capacitors are used on single-phase asynchronous motors and compressors. They are connected continuously to them and are required for their

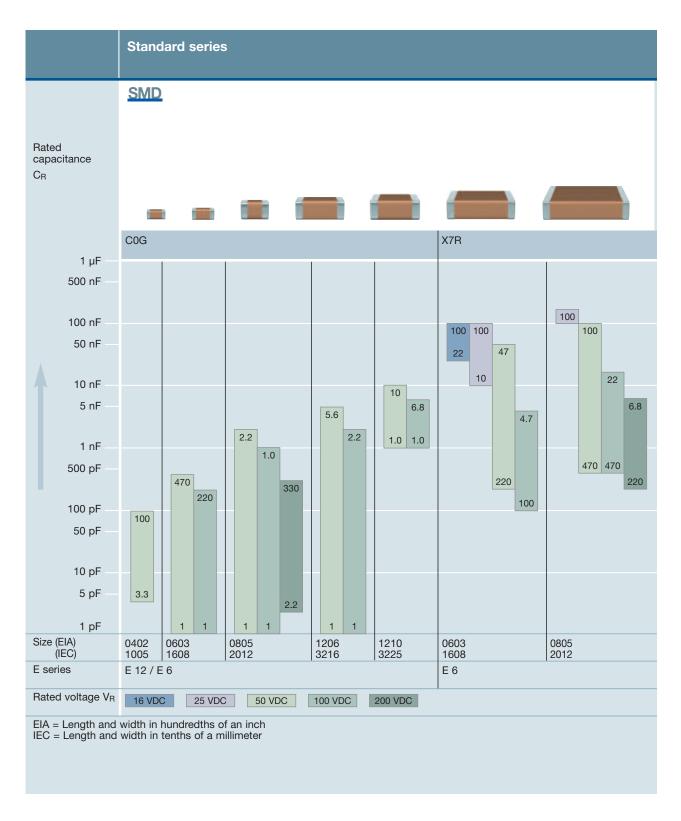

operation. Motor run capacitors increase the effectiveness and efficiency of the motor or compressor.

# **Power Capacitors**



PFC capacitors compensate reactive power and reduce harmonics. In addition to PFC capacitors, EPCOS offers PFC key components, such as power factor controllers, multi measuring interfaces, switching devices and reactors.

### **Power Capacitors**




Power capacitors are used to store, convert and control energy.

All capacitors are self-healing, i.e. voltage breakdowns heal in a matter of microseconds and so produce no short circuit.

## **Power Capacitors**





Multilayer ceramic capacitors (MLCC) offer maximum capacitance within the smallest space. They are needed in many areas of advanced microelectronics, for instance

information, entertainment, automotive and industrial electronics.



The complete product range of surface-mount MLCC by EPCOS is qualified to AEC-Q200 and thus is meeting the strict reliability criteria of automotive electronics as well as

demanding environmental and operating conditions in applications of industrial and information electronics.



The MLSC series provides highest functional reliability while saving space on the board thanks to the integration of two series capacitors in a single component.

The MLCCs of the ESD-robust series with stand voltages of 9 kV (1 nF) through > 25 kV (10 nF, size 0805), making them a cost-attractive solution in an ESD-fraught environment.

The HQF series was designed for wireless communications and high-frequency applications. Their advantages are excellent attenuation, low power dissipation and less energy absorption.



Arrays allow especially high placement and integration density on the PCB board. Thus they help cutting the cost and time for placement.

Feedthrough capacitors offer outstanding performance for signal filtering and EMI suppression up to the GHz frequency range.



### Ferrite Materials

| Field of application                        | Material | Initial permeability | Application examples                                               |
|---------------------------------------------|----------|----------------------|--------------------------------------------------------------------|
| Inductors for resonant circuits and filters | K1       | 80 ± 25%             | VHF filters, Balun, CATV, RF transformers                          |
| Circuits and liners                         | M33      | 750 ± 25%            | RF transformers                                                    |
|                                             | K10      | 800 ± 25%            |                                                                    |
|                                             | K8       | 860 ± 25%            | Line attenuation, current-compensated chokes                       |
|                                             | M13      | 2300 ± 25%           |                                                                    |
|                                             | N48      | 2300 ± 25%           | RF transformers, filters for telecommunications                    |
| Broadband transformers and EMC applications | N45      | 3800 ± 25%           | Filters for telecommunications                                     |
| and Livio applications                      | T57      | 4000 ± 25%           | LAN, DSL                                                           |
|                                             | N30      | 4300 ± 25%           | Current-compensated chokes                                         |
|                                             | T65      | 5200 ± 30%           | RF chokes                                                          |
|                                             | T35      | 6000 ± 25%           | Til Cilores                                                        |
|                                             | T37      | 6500 ± 25%           | Power line filters                                                 |
|                                             | T36      | 7000 ± 25%           | Current-compensated chokes, current transformers for energy meters |
|                                             | T38      | 10000 ± 30%          | DSL, impedance and matching transformers                           |
|                                             | T66      | 13000 ± 30%          | DOL, impedance and matering transformers                           |
|                                             | T46      | 15000 ± 30%          | ISDN transformers                                                  |
| Power transformers and chokes               | N49      | 1500 ± 25%           | High-frequency power transformers and chokes                       |
| and choices                                 | N92      | 1500 ± 25%           | Diode splitting transformers, high-voltage transformers, chokes    |
|                                             | N27      | 2000 ± 25%           |                                                                    |
|                                             | N87      | 2200 ± 25%           | Power transformers and chokes for medium- to high-frequency SMPS   |
|                                             | N97      | 2300 ± 25%           |                                                                    |
|                                             | N72      | 2500 ± 25%           | Ballasts for energy-saving lamps                                   |
|                                             | N41      | 2800 ± 20%           | Pulse transformers, inverters for CCFL                             |
|                                             | N51      | 3000 ± 25%           | Power transformers for standby                                     |
|                                             | N95      | 3000 ± 25%           | Power transformers                                                 |
| Inductive proximity switches                | N22      | 2300 ± 25%           | Sensors, ID systems                                                |

EPCOS develops and manufactures soft-magnetic oxide ceramic ferrite materials (basic materials MnZn and NiZn) under the designation SIFERRIT.

The outstanding properties of these materials permit diverse applications. The above table is an orientation aid for their selection and use.

|                                                  | RM, I              | RM LP     |             |                    |                      |           |                |            |      |             |         |             |      |
|--------------------------------------------------|--------------------|-----------|-------------|--------------------|----------------------|-----------|----------------|------------|------|-------------|---------|-------------|------|
|                                                  | SME                | )         |             |                    |                      |           |                |            |      |             |         |             |      |
|                                                  |                    | ول        | Ĺ.          | Ĺ                  | j                    |           |                |            |      |             | Ağ ülük |             |      |
| Material                                         | K1                 | M33       | N48         | N45                | N30                  | T35       | T38            | T66        | N49  | N87         | N97     | N41         | N92  |
| RM cores                                         | A <sub>L</sub> val | ues appr  | rox. (nH)   |                    |                      |           |                |            |      |             |         |             |      |
| RM 4<br><b>1234</b>                              | 16<br>25           | 40<br>63  | 63<br>160   | 1700               | 1900                 | 2800      | 3700           |            | 750  | 1100        | 1100    |             |      |
| RM 5<br><b>12345</b>                             | 25<br>40           | 63<br>100 | 160<br>1800 | 2600               | 3500                 |           | 6700           | 9600       | 1300 | 2000        | 2000    | 2600        |      |
| RM 6<br>12345                                    | 40                 | 63<br>100 | 160<br>2200 | 3500               | 4300                 | 6200      | 8600           | 12300      | 1700 | 2400        | 2400    | 250<br>3100 |      |
| RM 7<br>1234                                     |                    |           | 250<br>315  |                    | 5000                 |           | 10000          |            | 1900 | 2700        | 2700    | 160<br>250  |      |
| RM 8<br><b>1234</b>                              |                    |           | 250<br>2900 |                    | 5700                 |           | 12500          |            | 2200 | 250<br>3300 | . 3300  | 160<br>4100 |      |
| RM 10<br><b>1234</b>                             |                    |           | 400<br>630  |                    | 7600                 |           | 16000          |            | 2900 | 4200        | 4200    | 250<br>5500 |      |
| RM 12<br><b>12</b>                               |                    |           |             |                    | 8700                 |           |                |            | 3700 | 5300        | 5300    | 160<br>6000 |      |
| RM 14<br><b>123</b>                              |                    |           |             |                    |                      |           |                |            | 3900 | 6000        | 6000    | 160<br>6800 |      |
| Low profile                                      |                    |           |             |                    |                      |           |                |            |      |             |         |             |      |
| RM 4 LP<br>235                                   |                    |           |             |                    |                      |           | 5000           |            | 950  | 1300        |         |             | 1000 |
| RM 5 LP                                          |                    |           |             |                    |                      |           | 7700           |            | 1700 | 2400        |         |             | 1900 |
| RM 6 LP                                          |                    |           |             |                    |                      |           | 10500          |            | 2200 | 3000        |         |             | 2300 |
| RM 7 LP                                          |                    |           |             |                    |                      |           | 11500          |            | 2400 | 3300        |         |             | 2600 |
| RM 8 LP<br>23                                    |                    |           |             |                    |                      |           |                |            | 2900 | 4100        |         |             | 3100 |
| RM 10 LP                                         |                    |           |             |                    |                      |           |                |            | 3700 | 5200        |         |             | 4000 |
| RM 12 LP                                         |                    |           |             |                    |                      |           |                |            | 4500 | 6300        |         |             | 4800 |
| RM 14 LP                                         |                    |           |             |                    |                      |           |                |            | 5100 | 7100        |         |             | 5400 |
| Accessories:  1 = Pin coil forme 2 = Clamps, mou |                    | semblies  | 3 =<br>4 =  | Insulat<br>Adjusti | ing wash<br>ng devic | ers<br>es | <b>5</b> = SMI | O coil for | mers |             |         |             |      |

RM cores allow high effective packing density. The core dimensions are matched to standard PCB grids. When

height is a problem, there are low-profile designs (RM LP). RM cores are available with or without an air gap.

|                       | CMD                     |             |            |            |       |             |              |             |
|-----------------------|-------------------------|-------------|------------|------------|-------|-------------|--------------|-------------|
|                       | SMD                     |             |            |            |       |             |              |             |
|                       |                         | A           |            |            |       |             |              |             |
| Material              | N45                     | N30         | T57        | T38        | T65   | T66         | N27          | N87         |
| EP cores              | A <sub>L</sub> values a | pprox. (nH) |            |            |       |             |              |             |
| EP 5                  | 550                     |             | 560        | 16<br>2000 |       | 2200        |              | 430         |
| EP 6                  | 530                     |             | 900        | 16<br>1900 |       | 1700        |              | 410         |
| EP 7<br><b>123</b>    | 63<br>1500              | 2000        | 63<br>1500 | 63<br>5200 | 3000  | 5800        |              | 63<br>1100  |
| EPX 7/9<br>3          | 63<br>2500              |             | 63<br>2600 | 63<br>9000 |       | 63<br>10500 |              |             |
| EPX 9/9<br>3          | 63<br>2400              |             | 63<br>2400 | 63<br>8000 |       | 63<br>8100  |              |             |
| EP 10<br><b>10</b>    | 63<br>1600              | 2000        | 63<br>1600 | 63<br>4800 | 2900  | 6000        |              | 63<br>1100  |
| EPX 10                |                         |             | 63<br>2000 | 63<br>6100 |       |             |              |             |
| EP 13<br><b>12</b>    | 63<br>2400              | 2800        | 63<br>2500 | 63<br>7000 | 4000  | 63<br>8500  |              | 63<br>1600  |
| EPO 13<br><b>1</b>    |                         |             | 63<br>2400 | 63<br>6600 |       |             |              |             |
| EP 17<br><b>12</b>    |                         | 4300        |            | 10800      | 6200  | 13000       |              | 2400        |
| EP 20<br><b>12</b>    |                         | 6700        |            | 18700      | 10200 |             |              | 200<br>4000 |
| PM cores              |                         |             |            |            |       |             |              |             |
| PM 50/39<br><b>12</b> |                         |             |            |            |       |             | 250<br>7400  | 7400        |
| PM 62/49<br><b>12</b> |                         |             |            |            |       |             | 315<br>9200  | 9200        |
| PM 74/59<br><b>12</b> |                         |             |            |            |       |             | 315<br>10000 | 10000       |
| PM 87/70<br><b>1</b>  |                         |             |            |            |       |             | 400<br>12000 | 12000       |
| PM 114/93<br><b>D</b> |                         |             |            |            |       |             | 630<br>16000 | 16000       |

EP cores are ideal for compact transformer designs with high inductance.

EPX and EPO cores are optimized ferrite cores for xDSL applications. They increase loop reach at a given data rate for xDSL applications.

PM cores are particularly suitable for use in transformers handling high powers up to 300 kHz.

|                                                             | P, PS, P                | СН            |                                                    |       |                |              |          |     |     |
|-------------------------------------------------------------|-------------------------|---------------|----------------------------------------------------|-------|----------------|--------------|----------|-----|-----|
|                                                             |                         |               |                                                    |       |                | •            | <b>©</b> |     |     |
| Material                                                    | K1                      | M33           | N48                                                | N30   | T38            | N87          | N41      | N27 | N22 |
| P cores                                                     | A <sub>L</sub> values a | approx. (nH)  |                                                    |       |                |              |          |     |     |
| P 3.3 x 2.6                                                 | 25                      |               |                                                    | 500   |                |              |          |     |     |
| P 4.6 x 4.1                                                 |                         | 200           |                                                    | 800   |                |              |          |     |     |
| P 5.8 x 3.3                                                 |                         | 350           | 800                                                |       |                |              |          |     |     |
| P7x4                                                        | 25                      | 63            | 100<br>1000                                        | 2000  |                |              |          |     |     |
| P9x5<br><b>1235</b>                                         | 25<br>40                | 63            | 100                                                | 2500  | 5500           |              |          |     |     |
| P 11 x 7                                                    | 25<br>40                | 40, 63<br>780 | 100                                                | 3500  | 7000           | 2000         |          |     |     |
| P 14 x 8                                                    | 140                     | 100<br>970    | 160<br>2100                                        | 4600  | 9800           | 2800         | 3300     |     |     |
| P 18 x 11                                                   | 40                      | 100           | 160<br>2800                                        | 5900  | 12600          | 3600         |          |     |     |
| P 22 x 13                                                   | 220                     |               | 160<br>3800                                        | 8300  | 16000          | 4400         |          |     |     |
| P 26 x 16                                                   | 100                     | 100<br>160    | 160<br>4900                                        | 9700  | 22000          | 5500         |          |     |     |
| P 30 x 19                                                   |                         |               | 250<br>6200                                        | 11500 | 28000          | 6400         |          |     |     |
| P 36 x 22<br>1234                                           |                         |               | 250<br>7600                                        | 15200 |                |              |          |     |     |
| P 41 x 25                                                   |                         |               | 250<br>8400                                        |       |                |              |          |     |     |
| Pot core halves <sup>1)</sup>                               |                         |               |                                                    |       |                |              |          |     |     |
| PS 7.35 x 3.6 <b>①</b>                                      |                         |               |                                                    |       |                |              |          |     |     |
| PS 9 x 3.5 <b>1</b>                                         |                         |               |                                                    |       |                |              |          |     |     |
| PCH 14.4 x 7.5 ①                                            |                         |               |                                                    |       |                |              |          |     |     |
| PS 25 x 8.9 <b>①</b>                                        |                         |               |                                                    |       |                |              |          |     |     |
| PS 30.5 x 10.2 <b>1</b>                                     |                         |               |                                                    |       |                |              |          |     |     |
| PS 35 x 10.8                                                |                         |               |                                                    |       |                |              |          |     |     |
| PS 47 x 14.9                                                |                         |               |                                                    |       |                |              |          |     |     |
| PS 68 x 14.5                                                |                         |               |                                                    |       |                |              |          |     |     |
| PCH 70 x 14.5 ①                                             |                         |               |                                                    |       |                |              |          |     |     |
| PCH 150 x 30                                                |                         |               |                                                    |       |                |              |          |     |     |
| Accessories:                                                |                         |               |                                                    |       |                |              |          |     |     |
| <ul><li>1 = Coil formers</li><li>2 = Yokes, mount</li></ul> | ing assembl             |               | <ul><li>Insulating v</li><li>Adjusting d</li></ul> |       | <b>5</b> = SMD | coil formers | 3        |     |     |

<sup>&</sup>lt;sup>1)</sup> PS cores to IEC 62323

P core sets (gapped and ungapped): Since the wound coil is completely enclosed by the ferrite core, P cores feature very low magnetic leakage.

Pot core halves are used in inductive proximity switches. Their dimensions are matched to standardized switches.

|                                                               | E                        |                          |               |      |              |      |      |      |
|---------------------------------------------------------------|--------------------------|--------------------------|---------------|------|--------------|------|------|------|
|                                                               | SMD                      |                          |               |      |              |      |      |      |
|                                                               |                          |                          |               |      |              |      |      |      |
|                                                               |                          |                          |               |      |              |      | A12  |      |
|                                                               |                          |                          |               |      |              |      |      |      |
|                                                               |                          |                          |               |      |              |      |      |      |
|                                                               |                          |                          |               |      | l.           |      | 1111 |      |
|                                                               |                          |                          |               |      |              | ПП   | HILL |      |
| Material                                                      | N30                      | T38                      | T46           | N45  | N27          | N72  | N87  | N41  |
|                                                               |                          |                          |               |      |              |      |      |      |
| E cores                                                       | A <sub>L</sub> values ap | prox. (nH) <sup>1)</sup> |               |      |              |      |      |      |
| E 5                                                           |                          | 1400                     |               |      |              |      | 270  |      |
| E 6.3                                                         | 700                      | 1700                     |               |      |              |      | 380  |      |
| E 8.8 <b>23</b>                                               | 1000                     | 2100                     |               |      |              |      | 550  |      |
| E 10/5.5/5                                                    |                          |                          |               |      | 750          |      | 800  |      |
| E 13/7/4 <b>023</b>                                           | 1000                     |                          | 3600          | 950  | 800          |      | 850  |      |
| E 14/8/4                                                      | 1250                     |                          |               |      | 860          |      |      | 1050 |
| E 16/6/5                                                      |                          |                          |               |      | 1100         |      | 1200 |      |
| E 16/8/5 <b>Q2</b>                                            | 1400                     |                          | 5100          | 1400 | 950          |      | 1000 |      |
| E 19/8/5                                                      | 1700                     |                          | 5800          |      | 1050         |      | 1150 |      |
| E 20/10/6 <b>12</b>                                           | 2150                     |                          |               |      | 1300         |      | 1470 |      |
| E 21/9/5                                                      | 1500                     |                          |               |      | 900          |      |      |      |
| E 25/13/7 <b>12</b>                                           | 2900                     |                          |               |      | 1750         |      | 1850 |      |
| E 25.4/10/7                                                   | 2700                     |                          | 8500          |      | 1500         |      | 1670 |      |
| E 30/15/7 <b>12</b>                                           | 3100                     |                          |               |      | 1700         |      | 1900 |      |
| E 32/16/9 <b>12</b>                                           | 3800                     |                          |               |      | 2100         |      | 2300 |      |
| E 32/16/11                                                    |                          |                          |               |      | 2222         |      | 2900 |      |
| E 34/14/9                                                     |                          |                          |               |      | 2300         |      | 2450 |      |
| E 36/18/11 <b>1</b>                                           |                          |                          |               |      | 2900         | 4000 | 3100 |      |
| E 40/16/12                                                    |                          |                          |               |      | 3800<br>3500 | 4600 | 3950 |      |
| E 42/21/15<br>E 42/21/20 <b>1</b>                             |                          |                          |               |      | 4750         |      | 5200 |      |
| E 47/20/16                                                    |                          |                          |               |      | 5100         |      | 5600 |      |
| E 55/28/21                                                    |                          |                          |               |      | 5800         |      | 6400 |      |
| E 55/28/25                                                    |                          |                          |               |      | 6800         |      | 7300 |      |
| E 56/24/19                                                    |                          |                          |               |      | 6300         |      | 6900 |      |
| E 65/32/27                                                    |                          |                          |               |      | 7200         |      | 7900 |      |
| E 70/33/32                                                    |                          |                          |               |      | 8850         |      | 9700 |      |
| E 80/38/20                                                    |                          |                          |               |      | 4150         |      | 4500 |      |
| Accessories:                                                  |                          |                          |               |      |              |      |      |      |
| <ul><li>1 = Pin coil forme</li><li>2 = Yokes, mount</li></ul> |                          |                          | MD coil forme | rs   |              |      |      |      |

 $<sup>^{\</sup>scriptscriptstyle{1)}}\,A_L$  values for ungapped core sets

E cores are suitable for power converters as well as for small-signal applications and EMI suppression purposes.

| N49 lues approx. (nH) <sup>1))</sup> 800 | N92                                                                                                                                                                                | N87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| lues approx. (nH)¹"                      | N92                                                                                                                                                                                | N87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                          |                                                                                                                                                                                    | 1107                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | N97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                          |                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                          | 850                                                                                                                                                                                | 1100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 1900                                     | 2050                                                                                                                                                                               | 2600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2670                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 3100                                     | 3400                                                                                                                                                                               | 4500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 3900                                     | 4300                                                                                                                                                                               | 5700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 4850                                     | 5400                                                                                                                                                                               | 7200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 7400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 5000                                     | 5500                                                                                                                                                                               | 7300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 7500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 0000                                     | 0000                                                                                                                                                                               | 7400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 8000                                     |                                                                                                                                                                                    | 12500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 0000                                     |                                                                                                                                                                                    | 12000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 850                                      | I ann                                                                                                                                                                              | 1250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                          |                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                          |                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                          |                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 6300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                          |                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 8400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                          |                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 8700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 5900                                     | 0400                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 8700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 2000                                     |                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 8900                                     |                                                                                                                                                                                    | 14000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                          |                                                                                                                                                                                    | 000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 200                                      |                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                          | 1100                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                          |                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                          |                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2300<br>3000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                          |                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                          |                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                          |                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                          |                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 3800                                     | 3800                                                                                                                                                                               | 4900                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 1000                                     | 4550                                                                                                                                                                               | 4700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                          |                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1800                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                          |                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                          |                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3770                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                          |                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                          |                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                          |                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4800                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                          |                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5750                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 3330                                     | 3270                                                                                                                                                                               | 4300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                          | 850<br>2100<br>3700<br>4400<br>5700<br>5900<br>8900<br>8900<br>800<br>1100<br>1800<br>2200<br>2600<br>3400<br>3000<br>3800<br>1600<br>1360<br>3000<br>2400<br>4200<br>3600<br>4350 | 850       900         2100       2300         3700       4000         4400       4800         5700       6200         5900       6400         8900       6400         8900       1100         1800       1800         2200       2200         2600       2600         3400       3400         3000       3000         3800       3800         1600       1550         1360       1320         3000       2950         2400       2450         4200       4150         3600       3650 | 850       900       1250         2100       2300       2900         3700       4000       5200         4400       4800       6300         5700       6200       8300         5900       6400       8500         8400       14000         8900       1200         1100       1500         1800       2300         2200       2200       3000         2600       2600       3400         3400       3400       4600         3000       3000       4100         3800       3800       4900         1600       1550       1700         1360       1320       1640         3000       2950       3680         2400       2450       3100         4200       4150       5100         3600       3650       4700         4350       4450       5600 |

 $<sup>^{\</sup>mbox{\tiny 1)}}$   $A_L$  values for ungapped core sets

Low-profile E cores (ELP) feature high power density and low insertion height. Suitable for DC/DC and AC/DC converters with frequencies up to 1 MHz.

Planar cores has become common in the power supply market for low-profile design. Planar cores can be directly integrated into the PCB.

|              |        | ER, PQ                     |                        |      |      |      |      |      |
|--------------|--------|----------------------------|------------------------|------|------|------|------|------|
|              |        |                            |                        |      |      |      |      |      |
| Material     |        | N49                        | N92                    | N27  | N87  | N97  | N72  | N95  |
| ER cores     |        | A <sub>L</sub> values appr | ox. (nH) <sup>1)</sup> |      |      |      |      |      |
| ER 28/17/11  |        |                            |                        |      |      |      | 2700 |      |
| ER 35/20/11  |        |                            |                        | 2500 | 2700 |      |      |      |
| ER 42/22/15  | 0      |                            |                        | 3200 | 3700 |      |      |      |
| ER 46/17/18  |        |                            |                        | 5700 |      |      |      |      |
| ER 49/27/17  |        |                            |                        | 3500 |      |      |      |      |
| ER 54/18/18  |        |                            |                        | 5600 | 5800 |      |      |      |
| PQ cores     |        | NEW                        |                        |      |      |      |      |      |
| PQ 16/11.6   |        | 1900                       | 1900                   |      | 2350 | 2450 |      | 2750 |
| PQ 20/16     | 0      | 2400                       | 2400                   |      | 3100 | 3200 |      | 3750 |
| PQ 20/20     | 0      | 2000                       |                        |      | 2650 | 2750 |      | 3300 |
| PQ 26/20     | 0      | 3850                       |                        |      | 5000 | 5150 |      | 6300 |
| PQ 26/25     | 0      | 3300                       |                        |      | 4500 | 4650 |      | 5700 |
| PQ 32/20     | 0      | 4600                       |                        |      | 6300 | 6500 |      | 7600 |
| PQ 32/30     | 0      | 3450                       |                        |      | 4800 | 5000 |      | 6100 |
| PQ 35/35     |        | 3300                       | 3300                   |      | 4500 | 4700 |      | 5700 |
| Accessories: | ا = ال | Pin coil formers           |                        |      |      |      |      |      |

 $<sup>^{\</sup>scriptscriptstyle{1)}}\,A_L$  values for ungapped core sets

ER cores with round center leg offer ideal features for the design of SMPS transformers and chokes.

PQ cores are a preferred shape for power conversion. Compared to the conventional round/rectangular E type

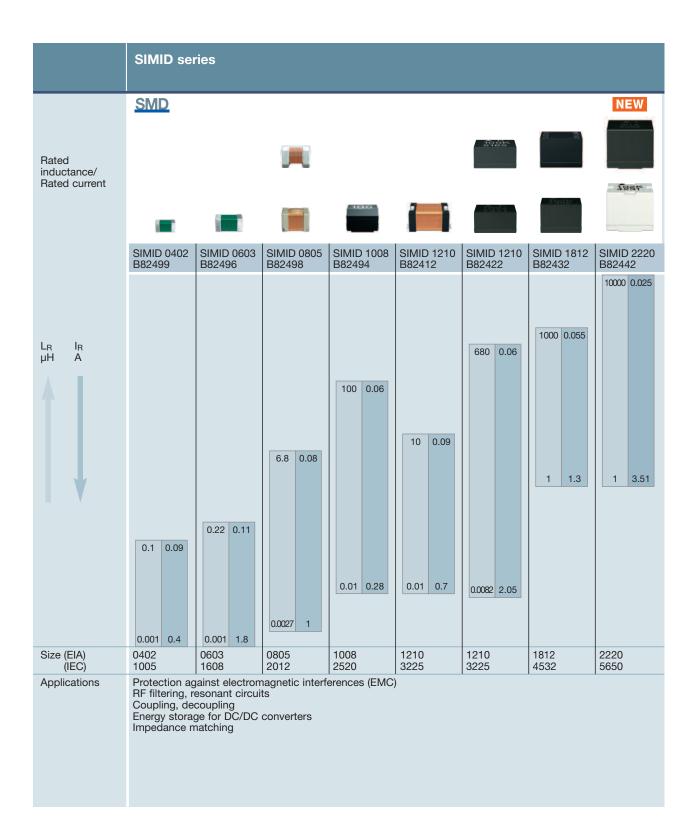
cores they have optimized round leg and wider outer surface. Thus reduces winding length and hence copper cost in the manufacturing and lowers the thermal resistance by offering a larger area for heat dissipation.

|                                                   | ETD, EFD, EV, U/I                                |                 |      |      |
|---------------------------------------------------|--------------------------------------------------|-----------------|------|------|
|                                                   |                                                  |                 |      |      |
| Material                                          | N49                                              | N27             | N87  | N97  |
| ETD cores                                         | A <sub>L</sub> values approx. (nH) <sup>1)</sup> |                 |      |      |
| ETD 29/16/10 <b>12</b>                            |                                                  | 2000            | 2200 | 2250 |
| ETD 34/17/11 <b>12</b>                            |                                                  | 2400            | 2600 | 2650 |
| ETD 39/20/13 12                                   |                                                  | 2550            | 2700 | 2800 |
| ETD 44/22/15 102                                  |                                                  | 3300            | 3500 | 3600 |
| ETD 49/25/16 <b>12</b>                            |                                                  | 3700            | 3800 | 3900 |
| ETD 54/28/19 12                                   |                                                  | 4200            | 4450 | 4600 |
| ETD 59/31/22 12                                   |                                                  | 5000            | 5300 | 5500 |
| EFD cores                                         |                                                  |                 |      |      |
| EFD 10/5/3                                        | 370                                              |                 | 450  | 470  |
| EFD 15/8/5 <b>123</b>                             | 600                                              |                 | 780  | 820  |
| EFD 20/10/7 <b>12</b>                             | 910                                              |                 | 1200 | 1250 |
| EFD 25/13/9 <b>12</b>                             |                                                  |                 | 2000 | 2100 |
| EFD 30/15/9 <b>12</b>                             |                                                  |                 | 2050 | 2150 |
| EV cores                                          |                                                  |                 |      |      |
| EV 15/9/7                                         |                                                  | 1150            | 1250 | 1300 |
| EV 25/13/13                                       |                                                  | 2400            | 2500 | 2600 |
| EV 30/16/13                                       |                                                  | 2600            | 2800 | 2900 |
| U/UI cores                                        |                                                  |                 |      |      |
| U 93/76/16                                        |                                                  | 2900            | 3100 |      |
| U 93/76/20                                        |                                                  | 3600            | 3900 |      |
| U 93/76/30                                        |                                                  | 5400            | 5700 |      |
| U 101/76/30                                       |                                                  | 4600            | 5700 |      |
| U 126/91/20                                       |                                                  |                 | 3000 |      |
| U 141/78/30                                       |                                                  | 7500            | 8900 |      |
| UI 93/104/16                                      |                                                  | 3800            | 4100 |      |
| UI 93/104/20                                      |                                                  | 4900            | 5300 |      |
| UI 93/104/30                                      |                                                  | 7400            | 7900 |      |
| UI 126/119/20                                     |                                                  |                 | 3900 |      |
| Accessories:  1 = Pin coil forme 2 = Yokes, mount |                                                  | MD coil formers |      |      |

<sup>1)</sup> A<sub>L</sub> values for ungapped core sets

ETD, EFD and EV cores with flattened and recessed center leg permit a particularly flat transformer design. They are used for DC/DC converters, EV cores are

also for storage chokes and EMI suppression chokes. U cores are used for power, pulse and high-voltage transformers.


|              | Toroids                                  |                                                                        |                    |              |          |              |              |              |              |      |      |
|--------------|------------------------------------------|------------------------------------------------------------------------|--------------------|--------------|----------|--------------|--------------|--------------|--------------|------|------|
|              |                                          |                                                                        |                    |              |          |              |              |              |              |      |      |
|              |                                          |                                                                        |                    |              |          |              |              |              |              |      |      |
|              |                                          |                                                                        |                    |              |          |              |              |              |              |      |      |
|              |                                          |                                                                        |                    |              |          |              |              |              |              |      |      |
|              |                                          |                                                                        |                    |              |          |              |              |              |              |      |      |
|              | 0                                        |                                                                        |                    |              |          |              |              |              |              | 1    |      |
|              |                                          |                                                                        |                    |              |          |              |              |              |              |      |      |
| Material     |                                          |                                                                        | K10                | N30          | T57      | T65          | T35          | T37          | T38          | T46  | N87  |
| Toroids      | Outer dia. x inner                       |                                                                        | A <sub>L</sub> val | ues appi     | rox. (nH | )            |              |              |              |      |      |
| R 2.5        | mm<br>2.50 x 1.50 x 1.00                 | inch<br>0.098 x 0.059 x 0.039                                          | 70                 |              | 410      | 470          |              |              | 1020         | 1530 |      |
| R 2.54       | 2.54 x 1.27 x 1.27                       | $0.100 \times 0.050 \times 0.050$                                      | 120                |              | 690      | 800          |              |              | 1760         | 2640 |      |
| R 3.05       | 3.05 x 1.27 x 1.27                       | 0.120 x 0.050 x 0.050                                                  | 160                |              | 830      | 1000         |              |              |              | 3340 |      |
|              | 3.05 x 1.27 x 2.54                       | 0.120 x 0.050 x 0.100                                                  | 330                |              | 1700     | 2000         |              |              |              | 6500 |      |
|              | 3.05 x 1.78 x 2.03                       | 0.120 x 0.070 x 0.080                                                  | 160                |              | 870      | 1000         |              |              | 2150         | 3250 |      |
| R 3.43       | 3.43 x 1.78 x 1.78                       | 0.135 x 0.070 x 0.070                                                  | 160                |              | 930      | 1050         |              |              | 2300         | 3400 |      |
|              | 3.43 x 1.78 x 2.03                       | 0.135 x 0.070 x 0.080                                                  | 190                |              | 1060     | 1200         |              |              | 2650         | 4000 |      |
|              | 3.43 x 1.78 x 2.11                       | 0.135 x 0.070 x 0.083                                                  | 200                |              | 1100     | 1300         |              |              | 2770         | 4000 |      |
| R 3.94       | 3.94 x 1.78 x 1.78                       | 0.155 x 0.070 x 0.070                                                  | 200                |              | 1100     | 1350         |              |              | 2830         | 4200 |      |
|              | 3.94 x 2.24 x 1.30                       | 0.155 x 0.088 x 0.051                                                  | 100                |              | 550      | 700          |              |              | 1470         | 2200 |      |
| R 4          | 4.00 x 2.40 x 1.60                       | 0.157 x 0.094 x 0.063                                                  |                    | 700          |          | 750          |              |              | 1630         | 2450 |      |
| R 5.84       | 5.84 x 3.05 x 3.00                       | 0.230 x 0.120 x 0.118                                                  |                    | 1680         |          | 1800         |              |              | 3900         | 5850 |      |
| R 6.3        | $6.30 \times 3.80 \times 2.50$           | 0.248 x 0.150 x 0.098                                                  |                    | 1090         |          | 1160         |              |              | 2530         | 3600 | 560  |
| R 8          | 8.00 x 4.00 x 4.00                       | $0.315 \times 0.158 \times 0.158$                                      |                    | 2400         |          | 2550         |              |              | 5500         | 8000 | 1200 |
| R 9.53       | $9.53 \times 4.75 \times 3.17$           | $0.375 \times 0.187 \times 0.125$                                      |                    | 1900         |          | 2050         | 2650         |              | 4410         | 6400 | 970  |
| R 10         | $10.0 \times 6.00 \times 4.00$           | $0.394 \times 0.236 \times 0.157$                                      |                    | 1760         |          | 1900         | 2460         | 2660         | 4090         | 6000 | 900  |
| R 12.5       | 12.5 x 7.50 x 5.00                       | $0.492 \times 0.295 \times 0.197$                                      |                    | 2200         |          | 2400         | 3060         | 3320         | 5110         |      | 1120 |
| R 12.7       | 12.7 x 7.90 x 6.35                       | 0.500 x 0.311 x 0.250                                                  |                    | 2600         |          | 2850         | 3620         | 3920         | 6030         |      | 1330 |
| R 13.3       | 13.3 x 8.30 x 5.00                       | 0.524 x 0.327 x 0.197                                                  |                    | 2030         |          | 2300         | 2830         | 3060         | 4700         |      | 1040 |
| R 14         | 14.0 x 9.00 x 5.00                       | 0.551 x 0.354 x 0.197                                                  |                    | 1900         |          | 2300         | 2650         | 2880         | 4420         |      | 970  |
| R 15         | 15.0 x 10.4 x 5.30                       | 0.591 x 0.409 x 0.209                                                  |                    | 1670         |          | 2020         | 2330<br>3240 | 2520<br>3500 | 3880         |      | 850  |
| R 15.8       | 15.8 x 8.90 x 4.70                       | 0.622 x 0.350 x 0.185                                                  |                    | 2320         |          | 2800         |              | 4190         | 5400         |      | 1190 |
| R 16<br>R 17 | 16.0 x 9.60 x 6.30<br>17.0 x 10.7 x 6.80 | 0.630 x 0.378 x 0.248<br>0.669 x 0.421 x 0.268                         |                    | 2770<br>2710 |          | 3350<br>3250 | 3870<br>3770 | 4190         | 6440<br>6280 |      | 1420 |
| R 18.4       | 18.4 x 5.90 x 5.90                       | 0.724 x 0.232 x 0.232                                                  |                    | 5770         |          | 6680         | 8020         | 8690         | 13400        |      | 2950 |
| R 20         | 20.0 x 10.0 x 7.00                       | $0.724 \times 0.232 \times 0.232$<br>$0.787 \times 0.394 \times 0.276$ |                    | 4160         |          | 5050         | 5000         | 6280         | 9740         |      | 2130 |
| R 22.1       | 22.1 x 13.7 x 6.35                       | $0.870 \times 0.539 \times 0.250$                                      |                    | 2610         |          | 3160         | 3200         | 3950         | 6070         |      | 1340 |
| ,            | 22.1 x 13.7 x 7.90                       | $0.870 \times 0.539 \times 0.311$                                      |                    | 3250         |          | 3930         | 4000         | 4900         | 7570         |      | 1660 |
|              | 22.1 x 13.7 x 12.5                       | $0.870 \times 0.539 \times 0.492$                                      |                    | 5140         |          | 6200         | 6000         | 7770         |              |      | 2630 |
| R 22.6       | 22.6 x 14.7 x 9.20                       | 0.890 x 0.579 x 0.362                                                  |                    | 3420         |          | 4100         | 4200         | 5170         | 7900         |      | 1740 |
| R 25.3       | 25.3 x 14.8 x 10.0                       | 0.996 x 0.583 x 0.394                                                  |                    | 4620         |          | 5350         | 5400         | 6970         |              |      | 2360 |
|              | 25.3 x 14.8 x 15.0                       | 0.996 x 0.583 x 0.590                                                  |                    | 6930         |          | 8000         |              |              | 16100        |      | 3500 |
|              | 25.3 x 14.8 x 20.0                       | 0.996 x 0.583 x 0.787                                                  |                    | 9160         |          | 10600        | 10700        | 13800        | 21300        |      | 4680 |

Toroids are used principally as EMC chokes to sup- LAN chokes are typical applications for the K10 press RF interference in the MHz region and in signal material. transformers.

|                        | Toroids, Doub          | le-aperture cores                 | ;<br>                 |              |              |       |       |       |      |
|------------------------|------------------------|-----------------------------------|-----------------------|--------------|--------------|-------|-------|-------|------|
|                        |                        |                                   |                       |              |              |       |       |       |      |
| Material               |                        |                                   | K1                    | M13          | N30          | T65   | T37   | T38   | N87  |
| Toroids                | Outer dia. x inner o   | dia. x height<br>inch             | A <sub>L</sub> values | approx.      | (nH)         |       |       |       |      |
| R 29.5                 | 29.5 x 19.0 x 14.9     | 1.142 x 0.748 x 0.587             |                       |              | 5630         | 6800  | 8500  | 13100 | 2880 |
| R 30.5                 | 30.5 x 20.0 x 12.5     | 1.201 x 0.787 x 0.492             |                       |              | 4540         | 5400  | 6400  | 10600 | 2320 |
| R 34                   | 34.0 x 20.5 x 10.0     | 1.339 x 0.807 x 0.394             |                       |              | 4360         | 5100  | 6100  | 10100 | 2230 |
| 1104                   | 34.0 x 20.5 x 10.0     | 1.339 x 0.807 x 0.492             |                       |              | 5460         | 6400  | 7600  | 12700 | 2790 |
| R 36                   | 36.0 x 23.0 x 15.0     | 1.417 x 0.906 x 0.591             |                       |              | 5750         | 6700  | 8000  | 13500 | 2940 |
| R 38.1                 | 38.1 x 19.05 x 12.7    | $1.500 \times 0.750 \times 0.500$ |                       |              | 7570         | 8800  | 10500 | 17600 | 3870 |
| R 40                   | 40.0 x 24.0 x 16.0     | 1.575 x 0.945 x 0.630             |                       |              | 7000         | 8200  | 9800  | 17000 | 3590 |
| R 41.8                 | 41.8 x 26.2 x 12.5     | 1.646 x 1.031 x 0.492             |                       |              | 5000         | 5800  | 7000  |       | 2560 |
| R 50                   | 50.0 x 30.0 x 20.0     | 1.969 x 1.181 x 0.787             |                       |              | 8700         | 10000 | 12000 |       | 4460 |
| R 58.3                 |                        |                                   |                       |              |              | 10000 |       |       |      |
| H 30.3                 | 58.3 x 32.0 x 18.0     | 2.295 x 1.260 x 0.709             |                       |              | 9300         | 6050  | 13000 |       | 4800 |
|                        | 58.3 x 40.8 x 17.6     | 2.283 x 1.606 x 0.693             |                       |              | 5400         | 6250  | 7160  |       | 2760 |
| D 60                   | 58.3 x 40.8 x 20.2     | 2.295 x 1.606 x 0.795             |                       |              | 6200         | 7200  | 8000  |       | 3200 |
| R 63                   | 63.0 x 38.0 x 25.0     | 2.480 x 1.496 x 0.984             |                       |              | 10800        | 12600 | 13900 |       | 5000 |
| R 68                   | 68.0 x 48.0 x 13.0     | 2.677 x 1.890 x 0.512             |                       |              | 3890         | 4500  | 5000  |       | 1990 |
| R 87                   | 87.0 x 54.3 x 13.5     | 3.425 x 2.138 x 0.531             |                       |              | 5400         | 6280  | 7000  |       | 2790 |
| R 102                  | 102 x 65.8 x 15.0      | 4.016 x 2.591 x 0.591             |                       |              | 5500         | 6500  |       |       | 2880 |
| R 140                  | 140 x 103 x 25.0       | 5.512 x 4.055 x 0.984             |                       |              | 6200         |       |       |       |      |
| R 202  Double-aperture | 202 x 153 x 25.0 cores | 7.953 x 6.024 x 0.984             |                       |              | 5200         |       |       |       |      |
|                        | Core height (mm)       |                                   | I                     |              | 1            |       | 1     | 1     |      |
|                        | Core height (mm)       |                                   | 40                    | 1100         | 2400         |       |       |       |      |
|                        | 2.0                    |                                   | 42<br>60              | 1100<br>1440 | 2400<br>3100 |       |       |       |      |
|                        |                        |                                   | 140                   | 1440         | 7300         |       |       |       |      |
|                        | 6.2                    |                                   | 140                   |              |              |       |       |       |      |
|                        | 6.2<br>8.3             |                                   | 190                   |              | 10000        |       |       |       |      |

Double-aperture cores are particularly suitable for low-leakage storage chokes, pulse and broadband transformers.

### **SMT Inductors**



SMT inductors (SIMID) from EPCOS have excellent RF properties and very high reliability. They are characterized

by high temperature stability and can be used at ambient temperatures of up to 150 °C.

#### **SMT Power Inductors**

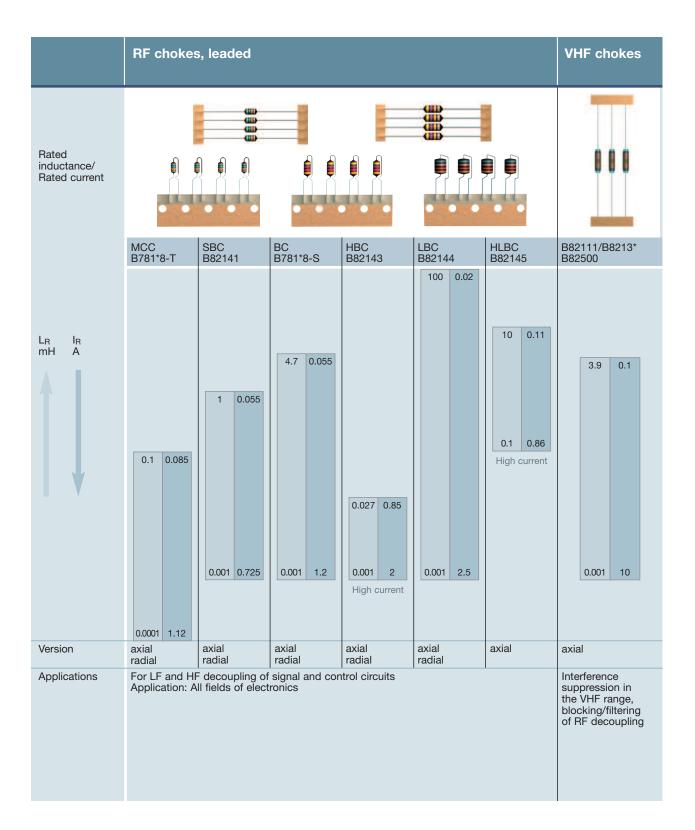


SMT power inductors extend the power range of the SIMID series towards even higher currents. The major characteristics of power inductors are high rated current

and low DC resistance. These compact and powerful components are available in shielded and unshielded versions.

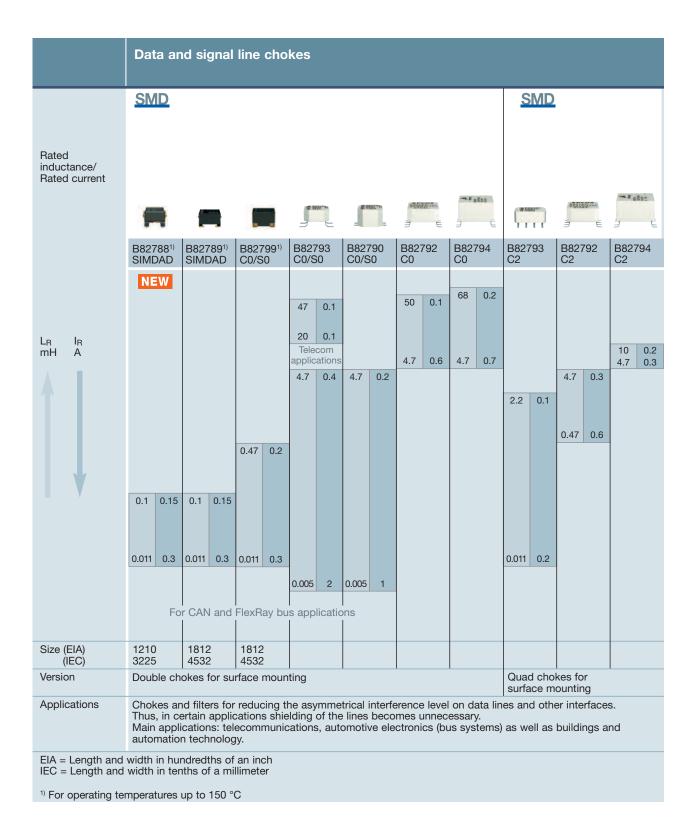
### **SMT Power Inductors**

|                                    | Standar                      | d and ext                     | ended sei                                | ries                      |             |                                           |                               |                                                        |                                   |
|------------------------------------|------------------------------|-------------------------------|------------------------------------------|---------------------------|-------------|-------------------------------------------|-------------------------------|--------------------------------------------------------|-----------------------------------|
| Rated inductance/<br>Rated current | yila<br>yila<br>Yila<br>yila |                               | \$250<br>2004                            | (400)<br>(700)<br>(700)   | <b></b>     | (Also)                                    |                               | SS 18822034<br>O AUTIS ASTID<br>0015                   | S Secretarions                    |
|                                    | B82462                       | B82464                        | B82471<br>B82475                         | B82472                    | B82476      | B82477                                    | B82479                        | B82559<br>A013                                         | B82559<br>A025                    |
| Le le pH A                         | 0.82 3.45                    | 0.82 7.6                      | 10 2.6                                   | 1 3.6                     | 1 6.8       | 0.82 11                                   | 1 8.6                         | 3.9 12 I <sub>sat</sub> 0.5 30                         | 10 24 I <sub>sat</sub>            |
| Size (I x w)<br>(mm)               | 6 x 6<br>6.3 x 6.3           | 10.4 x 10.4                   | 6.1 x 5.5/5.6<br>8.3 x 7.5<br>10.4 x 9.4 | 7.3 x 7.3                 | 12.95 x 9.4 | 12.3 x 12.3<br>12.5 x 12.5<br>12.8 x 12.8 | 18.5 x 15.24<br>18.54 x 15.24 | 13.2 x 11                                              | 25.3 x 23.5                       |
| Height (mm)                        | 2.5/3                        | 3/4.8                         | 4.9/5.5/5.8                              | 3.5/4.5                   | 5.08        | 4.8/6/6.5/<br>8/8.5                       | 7.11/7.25                     | 4.95/5.95                                              | 8.95<br>12.85                     |
| Version <sup>1)</sup> Applications | Protection a                 | against elect<br>supply volta | A<br>DC converter<br>romagnetic i<br>ges | G/P<br>rs<br>nterferences | B (EMC)     | G/P/D                                     | A/G                           | G<br>Energy stor<br>DC/DC cor<br>VRM modu<br>POL conve | G<br>rage for<br>overters<br>les, |


<sup>37</sup> 

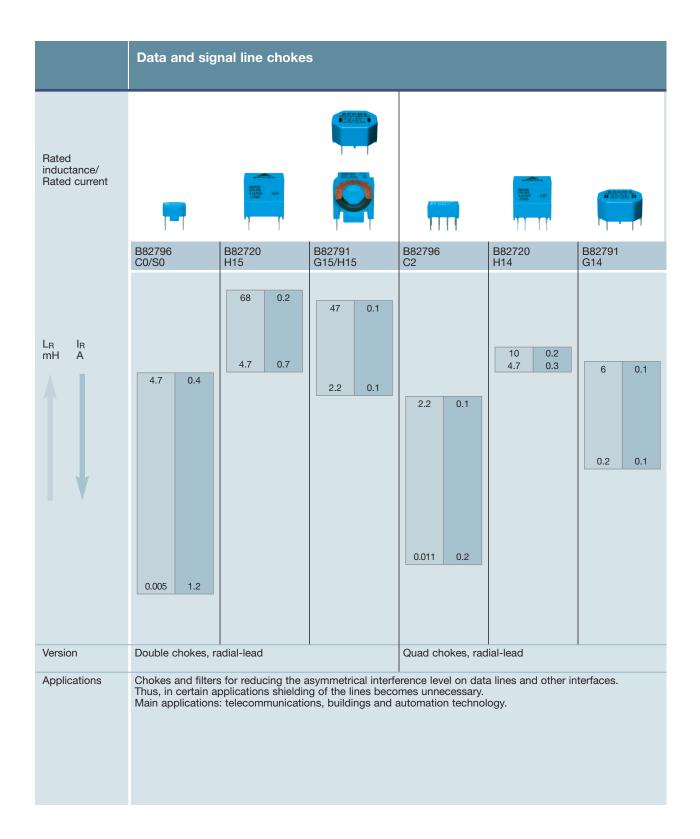
### Transponder Coils

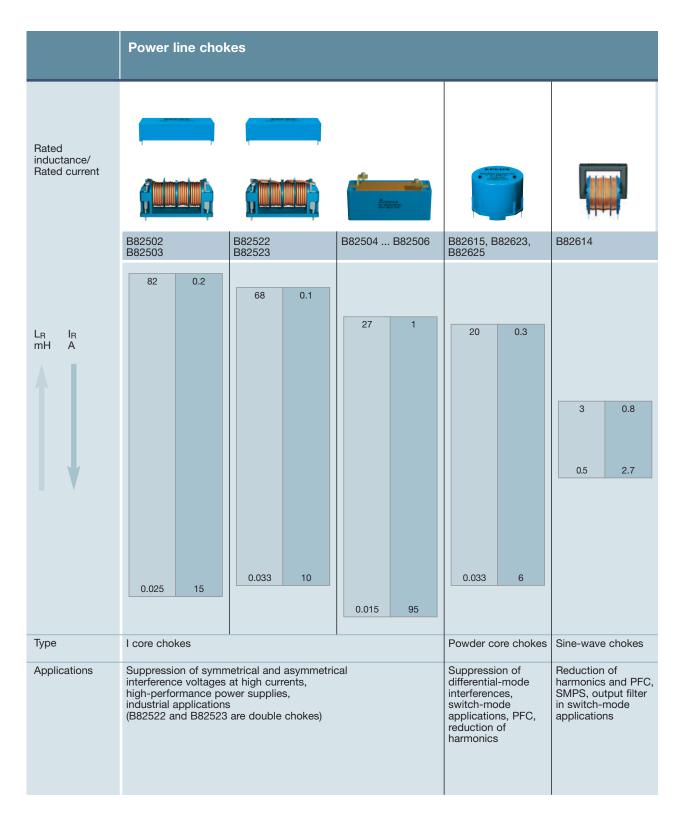
|                                             | For automotive application                                                                                 | ıs                           |                   |
|---------------------------------------------|------------------------------------------------------------------------------------------------------------|------------------------------|-------------------|
| Rated<br>inductance<br>L <sub>R</sub><br>mH | SMD                                                                                                        |                              |                   |
|                                             | B82450A*E<br>XY coil, molded                                                                               | B82450A*A<br>XY coil, molded | B82451N<br>Z coil |
|                                             | 7.0                                                                                                        | 7.0                          | <b>NEW</b> 4.75   |
| Sensitivity<br>(mV/µT)                      | 10 28                                                                                                      | 16 51                        | 16                |
| f <sub>res</sub> (MHz)                      | 1.1 3.0                                                                                                    | 1.1 3.5                      | > 0.0012          |
| Dimensions (mm) (Ixwxh)                     | 7.8 x 2.7 x 2.7                                                                                            | 11.4 x 3.5 x 2.4             | 7.7 x 7.5 x 2.65  |
| Applications                                | Automotive: Immobilizer, passive ke<br>Logistics<br>Security Systems<br>Agriculture<br>Medical engineering | eyless entry/go, TPMS        |                   |


SMT transponder coils are components forming part of a radio-frequency identification (RFID) system. These systems allow contactless identification without direct line of

sight. RFID systems are used in very different applications calling for wireless and contactless data transmission within a range of a few meters.

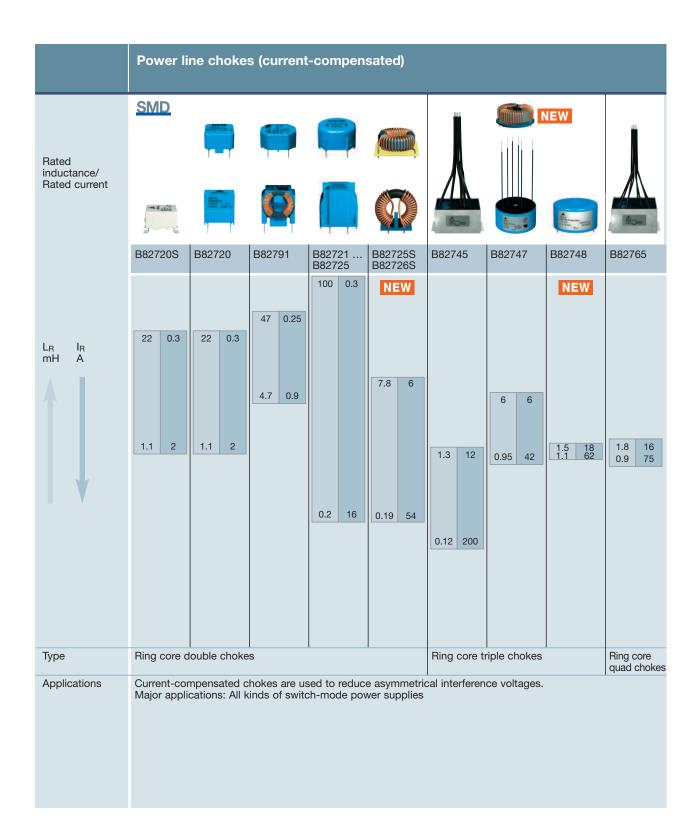


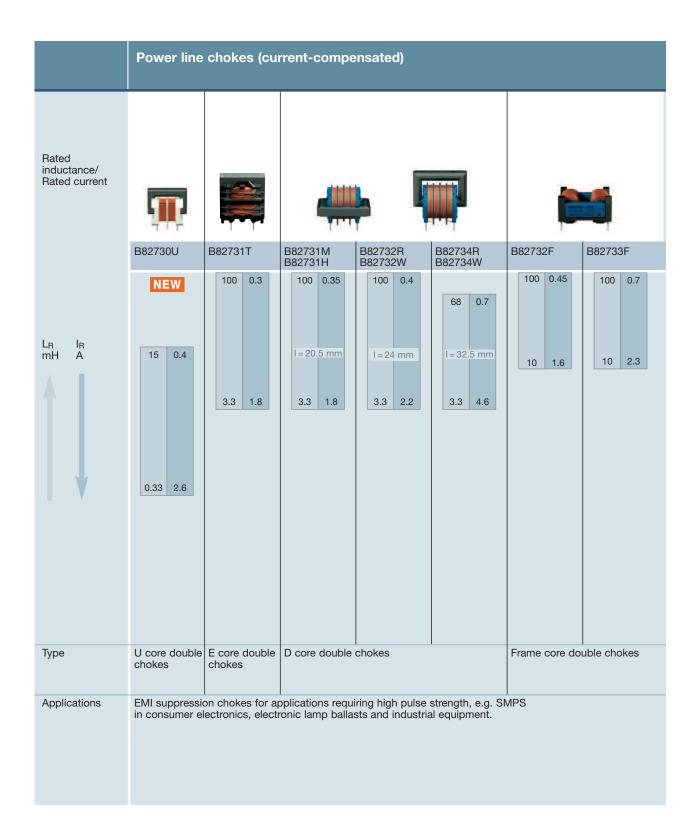

The proven RF and VHF chokes from EPCOS have outstanding RF and temperature properties as well as excellent saturation behavior.


VHF chokes offer broadband noise suppression and are predestined for power voltage applications thanks to their insulated encapsulation.

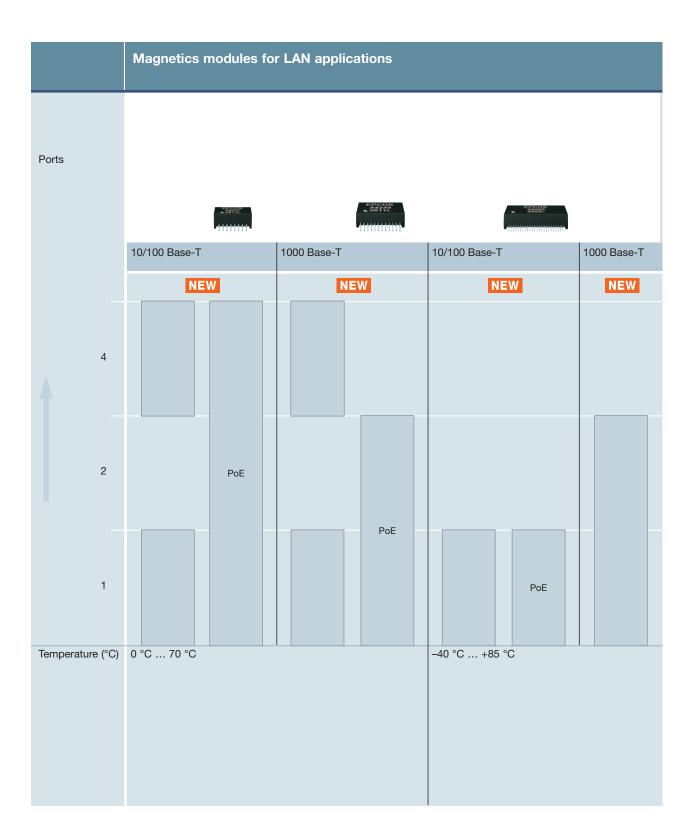


Data line chokes ensure electromagnetic compatibility (EMC) in the sector of data and signal transmission. They already suppress asymmetrical interference coupled onto


the lines from 1 kHz while letting data line signals up to several MHz bandwidth pass through unaffected.







EPCOS offers a wide range of power line chokes to ensure electromagnetic compatibility (EMC). I core, powder core and sine-wave chokes are used to

attenuate symmetrical interference, and current-compensated chokes to reduce asymmetrical interference (toroids, E core and D core chokes).





### Transformers for Information Technology



EPCOS introduces a new range of magnetics modules for Local Area Networks (LAN). They are optimized for use in hubs, switches, and routers but also for use in PCs and modems.

Ethernet Protocol is the common basis for data communication in LANs. Depending on the technology, different

transmission speeds can be distinguished: 10 Base-T with 10 Mbit/s, 100 Base-T with 100 Mbit/s and 1000 Base-T with 1 Gbit/s transmission speed.

Power over Ethernet (PoE) is necessary to implement applications like Voice over IP (VoIP) where the phone is powered via the Ethernet connection.

# Transformers for Information Technology

|                      | xDSL                          |                                                                                   |                                          |          |                        |  |  |  |  |
|----------------------|-------------------------------|-----------------------------------------------------------------------------------|------------------------------------------|----------|------------------------|--|--|--|--|
|                      | SMD                           |                                                                                   |                                          |          |                        |  |  |  |  |
|                      | * = *-                        |                                                                                   |                                          |          |                        |  |  |  |  |
| IC<br>manufacturer   | IC name                       | IC number                                                                         | Core                                     | Version  | L (mH)                 |  |  |  |  |
|                      | Interface transforme          | ers ADSL / ADSL+                                                                  |                                          |          |                        |  |  |  |  |
| Broadcom             | Bladerunner                   | BCM6410/6420<br>BCM6411/6421, 6511                                                | EP 5 XL, EP 7                            | SMD      | 0.10, 0.42, 0.43       |  |  |  |  |
| Conexant             | Viking/Atlas                  | G7000 DTM                                                                         | EP 13                                    | SMD      | 0.44                   |  |  |  |  |
|                      | Octane G24                    |                                                                                   | EP 7, EPX 5, EPX 7/9                     | SMD      | 1.0, 1.075             |  |  |  |  |
| Infineon             | Amazon                        | PSB 50501/505/510                                                                 | EP 13                                    | SMD      | 0.2, 1.4               |  |  |  |  |
|                      | Danube                        |                                                                                   | EP 13                                    | SMD      | 0.2, 1.4               |  |  |  |  |
|                      | GEMINAX                       | PEF 55008, 55208,                                                                 | EP 13, EP 7, EPX 5                       | SMD      | 0.082, 0.34, 0.44, 1.4 |  |  |  |  |
|                      |                               | 55016, 55218, 55602                                                               | TP-Module                                |          | 1.44, 2.8, 6.8, 20     |  |  |  |  |
| Texas<br>Instruments | AC6                           | AC6                                                                               | EP 7                                     | SMD      | 0.40                   |  |  |  |  |
|                      | Interface transforme          | ers SHDSL                                                                         |                                          |          |                        |  |  |  |  |
| Infineon             | SDFE-x and<br>Socrates family | PEF 21624, 22624,<br>24624, 21627, 22627,<br>24627, 21628, 22628,<br>24628, 24625 | EPX 9, EP 13                             | SMD, PTH | 3.0                    |  |  |  |  |
|                      | Socrates                      | PEF 22622, 22623, 24622                                                           | EP 13                                    | SMD      | 3.0                    |  |  |  |  |
|                      | Interface transforme          | ers VDSL                                                                          |                                          |          |                        |  |  |  |  |
| Broadcom             | Bladerunner                   | BCM6505, 6506,<br>6510, 6526, 6511,<br>6512, 6516, 6526                           | EP 7, EPX 5                              | SMD      | 0.10, 0.42, 0.43       |  |  |  |  |
| Conexant             | Accelity                      |                                                                                   | EP 7                                     | SMD      | 0.8                    |  |  |  |  |
| Ikanos               | CO2                           | CO2                                                                               | EP 7                                     | SMD      | 0.22                   |  |  |  |  |
| Infineon             | VINAX                         | PEF 88102, 88208,<br>88204                                                        | EP 5 XL, EP 7, EPX 5<br>TC-Module, EP 13 | SMD      | 0.082, 0.27, 0.47      |  |  |  |  |
|                      |                               | PEB 83000<br>PSB 80170                                                            | EP 7                                     | SMD      | 0.27, 0.47             |  |  |  |  |

Leading manufacturers of telecom ICs have released the EPCOS transformers listed here for the respective xDSL applications.

# Transformers for Information Technology

|                    | ISDN                                                                     |                   |                 |                |  |  |  |
|--------------------|--------------------------------------------------------------------------|-------------------|-----------------|----------------|--|--|--|
|                    | SMD                                                                      |                   |                 |                |  |  |  |
|                    |                                                                          |                   |                 |                |  |  |  |
|                    | E TERM                                                                   |                   |                 |                |  |  |  |
| IC<br>manufacturer | IC number                                                                | Core              | Version         | L (mH)         |  |  |  |
|                    | U <sub>K0</sub> /2B1Q                                                    | I                 |                 |                |  |  |  |
| AMD                | AM2091                                                                   | RM 6, RM 8        | PTH             | 13.3, 14.5     |  |  |  |
| Infineon           | Q-Smint PEF 80912, 80913, 81912, 81913, 82912, 82913                     | RM 6<br>EP 13     | PTH<br>SMD, PTH | 14.44<br>14.47 |  |  |  |
|                    | PSB 24902, 24911, 8091, 8191                                             | RM 6, RM 8        | PTH             | 13.3, 14.5     |  |  |  |
|                    | U <sub>K0</sub> /4B3T                                                    |                   | <u>'</u>        |                |  |  |  |
| AMD                | AM20902                                                                  | RM 6              | PTH             | 5.5, 7.7       |  |  |  |
| Infineon           | T-Smint PEF 80902, 80903, 81902, 81903, 82902, 82903                     | RM 6<br>EP 13     | PTH<br>SMD, PTH | 7.61<br>7.57   |  |  |  |
|                    | PSB 20902, 24901, 24902, 8090                                            | RM 6              | PTH             | 5.5, 7.7       |  |  |  |
| Mietec             | MTC2071                                                                  | RM 6              | PTH             | 5.5            |  |  |  |
| Wild Co            | MTC2072                                                                  | RM 6              | PTH             | 7.7            |  |  |  |
|                    | S <sub>0</sub>                                                           |                   |                 |                |  |  |  |
| AMD                | AM79C30A, 79C32A                                                         | R 10, R 10 amorph | PTH             | 22, 30         |  |  |  |
| Infineon           | PEB/PSB 2080, 2081,<br>2084, 2085, 2086, 2115,<br>2186, 8090, 8091, 8191 | R 10, R 10 amorph | PTH             | 22, 30         |  |  |  |
|                    | PEB/PSB 21381 21384                                                      | R 10              | SMD             | 22             |  |  |  |
| Mietec             | MTC2072, 20276                                                           | R 10, R 10 amorph | PTH             | 22, 30         |  |  |  |

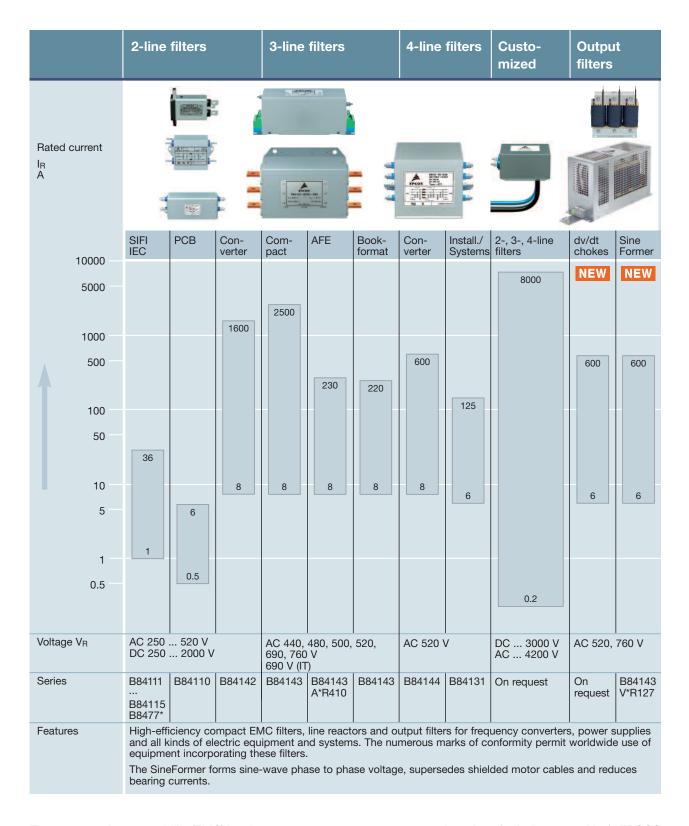
Leading manufacturers of telecom ICs have released the EPCOS transformers listed here for the respective ISDN applications.

## Specific Transformers and Chokes

|              | RF<br>transformers                                                                                                                                                                                                  | Lighting                                                                                                                                                                      | Industrial                                                                                                                                                                            | Automotive                                                                                                                                                   | Current sense transformers                                                                                                              |
|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|
|              | SMD<br>A                                                                                                                                                                                                            | EPCOS PHECOS PITES ORTO                                                                                                                                                       | SMD                                                                                                                                                                                   | SMD                                                                                                                                                          | NEW                                                                                                                                     |
| Applications | <ul> <li>Antenna plugs<br/>for SAT + CATV</li> <li>Satellite<br/>receivers</li> <li>Cable-TV,<br/>video<br/>modulators</li> <li>Mixers and<br/>up/down<br/>converters</li> <li>Mobile<br/>communications</li> </ul> | <ul> <li>Chokes for resonant circuits</li> <li>Transformers for power factor correction</li> <li>EMI suppression chokes</li> </ul>                                            | <ul> <li>Input chokes</li> <li>Output chokes</li> <li>Energy storage chokes</li> <li>Point of load converter (POL)</li> <li>Power transformers</li> <li>Drive transformers</li> </ul> | ■ Transformers and chokes for  - HID lamps - fuel injection - park systems - electrical steering - displays - dashboards - anntenna diversities - start stop | <ul> <li>Switching power supplies</li> <li>Feedback control</li> <li>Overload sensing</li> <li>Load drop/shut down detection</li> </ul> |
| Features     | Transformers based on double- aperture cores. Application range from 100 kHz to 2.5 GHz.                                                                                                                            | Ferrite materials with low power loss. Multi-section coil formers help to isolate the high resonance and winding voltage up to 3 kV. Flat types with height ≤14 mm available. | Chokes and standard transformers for very different power ranges plus custom models.                                                                                                  | Customized products                                                                                                                                          | Very low DC<br>resistance, different<br>turns ratios, small<br>package                                                                  |

In transformers, EPCOS devises complete solutions that perfectly match customer specifications. That allows

tailored inductive components from application-specific development through to volume production.


## **EMC Feedthrough Components**

|                                        | Feedthrough ca                                         | pacitors                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                       | Feedthrough fil                                        | ters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|----------------------------------------|--------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|--------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Rated current/<br>Rated<br>capacitance |                                                        | A me annous services and a service services and a service services and a service service service services and a service service service service services and a service service service services and a service service service services and a service service service service services and a service service service services and a service service service service services service serv |                       |                                                        | The second secon |
|                                        | B85121<br>Ø 16 mm, 20 mm                               | B85121<br>Ø 30 mm, 55 mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | B85111<br>Special     | B85321<br>Ø 16 mm, 20 mm                               | B85321<br>Ø 30 mm, 55 mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| I C<br>A μF                            | 25 0.00125<br>16 1                                     | 200 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 800 0.035<br>50 4.7   | 25<br>2x0.0025<br>16                                   | 500 2×0.1<br>25 2×4.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Terminals                              | Axial wire leads,<br>screw terminals,<br>soldering tag | Screw terminals                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Screw terminals       | Axial wire leads,<br>screw terminals,<br>soldering tag | Screw terminals                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Features                               | Solderless MKP tech                                    | l<br>nology (dry, self-healin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | g)                    |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Applications                           | Broadband interferen electronic equipment              | ce suppression beyond and systems.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | d the VHF range in AC | /DC supplies and cont                                  | rol lines of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |

Feedthrough components are used to suppress interference in electrical installations and equipment. They are also ideal for telephone switching systems and base

stations, where they prevent interference pulses in the external power supply network from entering the equipment and vice versa.

### **EMC** Filters



Electromagnetic compatibility (EMC) has become a mandatory property of electronic equipment by assuring its functionality. By offering one-stop shopping for EMC

components and services (including consulting), EPCOS supports its customers from the start of product development all the way to volume production.

### **EMC Filters for Shielded Rooms**

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | For power lines                                                                             |                                                  | For comm                                 |           | Customize<br>Filter cabi |                |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|--------------------------------------------------|------------------------------------------|-----------|--------------------------|----------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                             |                                                  | E sa |           |                          |                |
| 100 GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | B84299*B**1; B84299*E**1<br>B84261 (low leakage)                                            | B84299*B**3; B84299*E**3<br>B84263 (low leakage) | B84312                                   |           | B84299G                  |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 40 GHz                                                                                      | 40 GHz                                           | 40 GHz                                   |           | 40 GHz                   |                |
| asym<br>1 GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                             |                                                  |                                          |           |                          |                |
| 100 MHz 100 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                             |                                                  |                                          |           |                          |                |
| Stop band attenuation, asymmetrical asymmetrical The Draw attenuation, asymmetrical The Draw attenuation, asymmetrical The Draw attenuation asymmetrical attenuation at |                                                                                             |                                                  |                                          |           |                          |                |
| 학<br>100 kHz —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 150 kHz                                                                                     |                                                  |                                          | 300 kHz   |                          | 300 kHz        |
| 10 kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                             | 14 kHz                                           | 10 kHz                                   |           | 10 kHz                   |                |
| 1 kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 400 Hz                                                                                      | 400 Hz                                           |                                          |           |                          |                |
| الله 100 Hz —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 50/60 Hz                                                                                    | 50/60 Hz                                         |                                          |           |                          |                |
| Pass band, symmetrical  1 Hz  1 Hz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                             |                                                  |                                          |           |                          |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ≈ 0 Hz (DC)                                                                                 | 0 Hz (DC)                                        |                                          | 0 Hz (DC) |                          | 0 Hz (DC)      |
| Voltage V <sub>R</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | AC/DC 250 690 V                                                                             |                                                  | 100 V                                    |           | AC/DC 100                |                |
| Current                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 16 1600 A                                                                                   |                                                  | 0.1 3 A                                  |           | 0.1 2500 A               | 1              |
| Lines                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2 4 for single or 3-phase syste                                                             | ms or DC systems                                 | 2 20                                     |           | 2 1000                   |                |
| Features                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Power line filters B84299 w<br>for all kinds of testings and<br>Power line filters B84261 a | vith single line chokes (sepa                    | or low leakage o                         |           | ling) are an op          | timal solution |

Filters for shieded rooms allow power and communications lines to be connected to shielded cabinets.

#### **EMC Services**

#### **EMC** laboratory

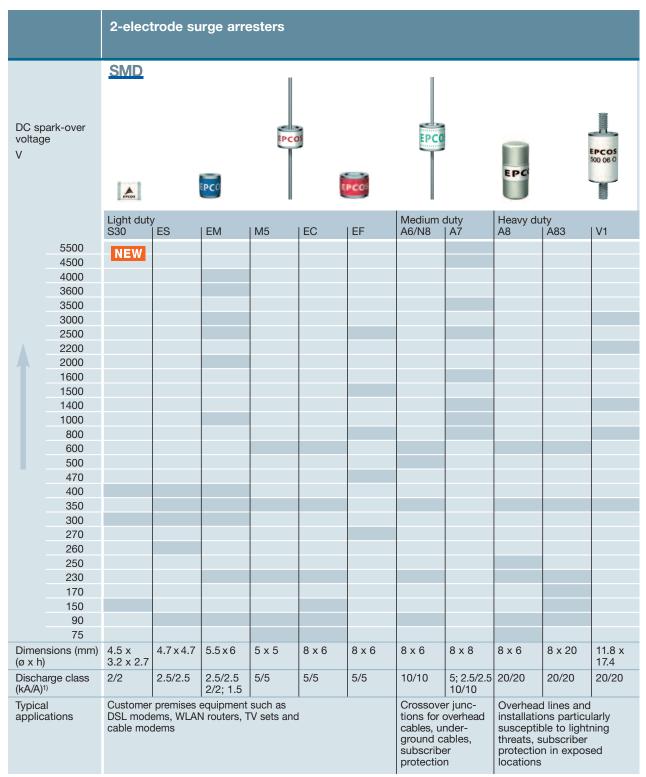




The EPCOS EMC Laboratory in Regensburg offers comprehensive, in-depth EMC services: from consulting and pre-compliance investigations on prototypes to conformity testing of series production equipment.

The excellently equipped laboratory, combined with many years' experience and EMC expertise, as well as active participation in national and international standardization bodies, provides a solid foundation for meeting customers' requirements. Investigations performed side by side with the development process determine the measures required to observe the EMC limits: these measures are documented in the measurement report in a manner that is transparent for the developers.

A test report provides proof of compliance with the relevant standards and is the basis for the customer's declaration of conformity.


#### Qualification

The EMC laboratory in Regensburg has been an accredited test laboratory since October 1994. Accreditation in accordance with the guidelines of the German Accreditation Council (DAR) now meets the current EN ISO/IEC 17025 quality standard for laboratories as the basis for the guaranteed independence, impartiality and integrity of its measurement and test results.

#### **Installations**

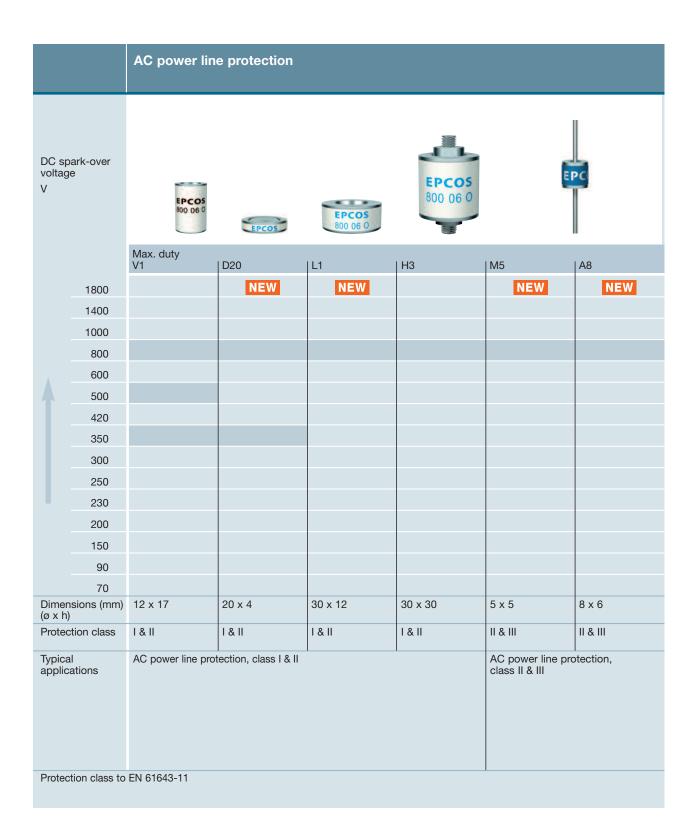
The EMC laboratory has a semi-anechoic chamber for field-strength measurements in accordance with the relevant standards at a measurement distance of 10 m between the antenna and the equipment under test. Special facilities such as large entrances, exhaust gas extraction, power supplies up to 100 A as well as resistive and inductive (motor) loads even permit the testing of bulky or high-powered equipment.

### Surge Arresters

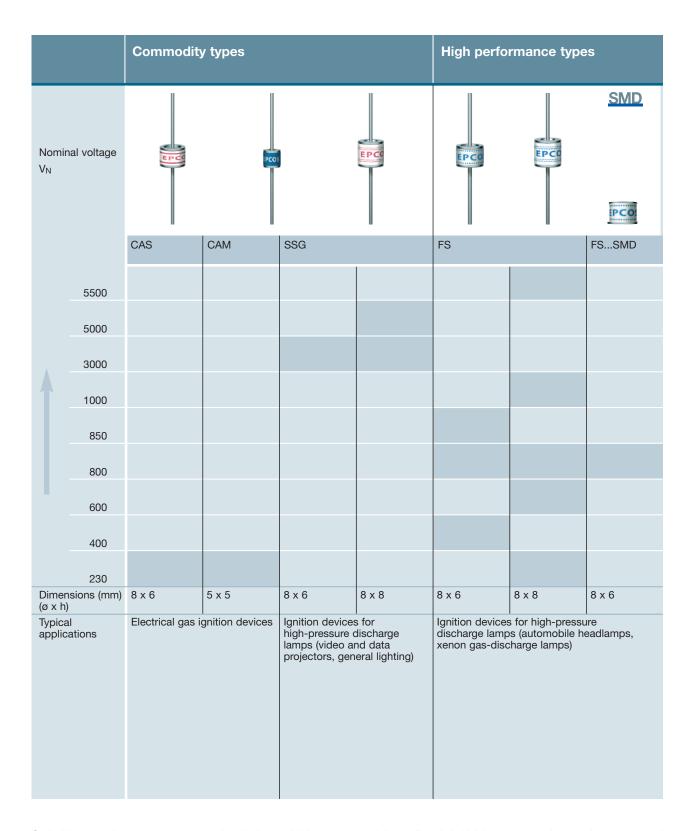


<sup>1)</sup> Surge current: 10 x 8/20 µs wave in total /AC current: 10 x 1 s/50 Hz in total

Surge arresters are components which protect communications and information installations as well as TT systems from failure or destruction.


Reliable voltage limitation, high current-discharge capability, low self-capacitance and high insulation resistance

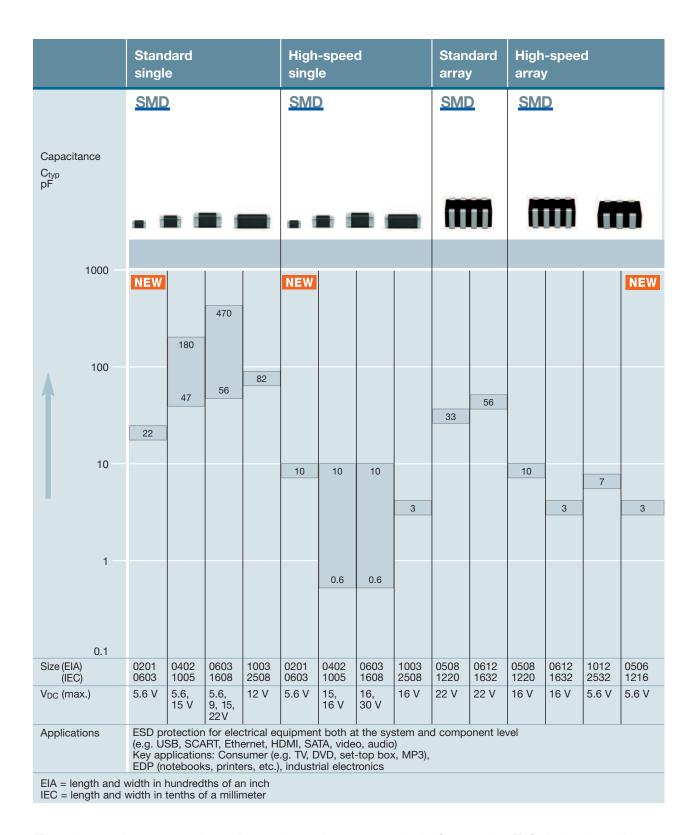
offer optimum protection against voltage surges due to lightning, electrostatic or electromagnetic discharges. This applies to equipment and installations in the fixed network with its xDSL applications as well as in the mobile phone, cable TV and AC power line networks.


# Surge Arresters

|                               |               | 3-electrode s                                                                                                 | urge arr                                                                     | esters                        |                         |                                           |           |            |                                        |                        |               |
|-------------------------------|---------------|---------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|-------------------------------|-------------------------|-------------------------------------------|-----------|------------|----------------------------------------|------------------------|---------------|
|                               |               |                                                                                                               |                                                                              | 3                             | SMD                     |                                           |           |            |                                        |                        |               |
| DC sp<br>voltage<br>V         | ark-over<br>e | 44                                                                                                            | io <sub>a</sub>                                                              | 188                           | <b>EPC</b> 0<br>30 02 ∫ |                                           | EP.       | <b>C</b> 0 | 100 PCO                                | 800                    |               |
|                               |               | Hybrid<br>EK                                                                                                  | Light duty<br>EZ                                                             | ,<br>  T9                     | Medium o                | duty<br>  EK                              | T3        | T8         | Heavy du<br>T2                         | ity<br>  T2/T5         | T6            |
|                               | 650           |                                                                                                               |                                                                              |                               |                         |                                           |           |            |                                        |                        |               |
|                               | 600           |                                                                                                               |                                                                              |                               |                         |                                           |           |            |                                        |                        |               |
|                               | 500           |                                                                                                               |                                                                              |                               |                         |                                           |           |            |                                        |                        |               |
| <b>A</b>                      | 420           |                                                                                                               |                                                                              |                               |                         |                                           |           |            |                                        |                        |               |
|                               | 350           |                                                                                                               |                                                                              |                               |                         |                                           |           |            |                                        |                        |               |
|                               | 300           |                                                                                                               |                                                                              |                               |                         |                                           |           |            |                                        |                        |               |
|                               | 260           |                                                                                                               |                                                                              |                               |                         |                                           |           |            |                                        |                        |               |
|                               | 250           |                                                                                                               |                                                                              |                               |                         |                                           |           |            |                                        |                        |               |
|                               | 230           |                                                                                                               |                                                                              |                               |                         |                                           |           |            |                                        |                        |               |
|                               | 150           |                                                                                                               |                                                                              |                               |                         |                                           |           |            |                                        |                        |               |
|                               | 90            |                                                                                                               |                                                                              |                               |                         |                                           |           |            |                                        |                        |               |
| Disco                         | 75            | 0.014                                                                                                         | F 7.0                                                                        | F70                           | 00.01                   | 0.0.40                                    | 00        | 010        | 010                                    | 010                    | 0.5           |
| (ø x h)                       |               |                                                                                                               | 5 x 7.6                                                                      | 5 x 7.6                       | 6.3 x 8.1               |                                           | 6 x 8     | 8 x 10     | 8 x 10                                 | 8 x 10                 | 9.5 x<br>11.5 |
| Discha<br>(kA/A) <sup>1</sup> | arge class    | 10/10                                                                                                         | 5/5                                                                          | 5/5                           | 10/10                   | 10/10                                     | 10/10     | 10/10      | 20/10                                  | 20/10<br>(US<br>spec.) | 20/20         |
| Typica<br>applica             | l<br>ations   | Main distributor<br>and subscriber<br>protection in<br>regions with high<br>frequency of<br>lightning strikes | Undergrou<br>and privat<br>exchange<br>densely p<br>regions as<br>main distr | s in<br>opulated<br>s well as | overhead                | r junctions<br>cables, un<br>r protection | derground | cables,    | installatio<br>susceptib<br>threats, s | n in expose            | ing           |
| 1) Surg                       | je current: 1 | 0 x 8/20 μs wave in                                                                                           | total/AC                                                                     | current: 10                   | x 1 s/50 H              | dz in total                               |           |            |                                        |                        |               |

### Surge Arresters




### Switching Spark Gaps



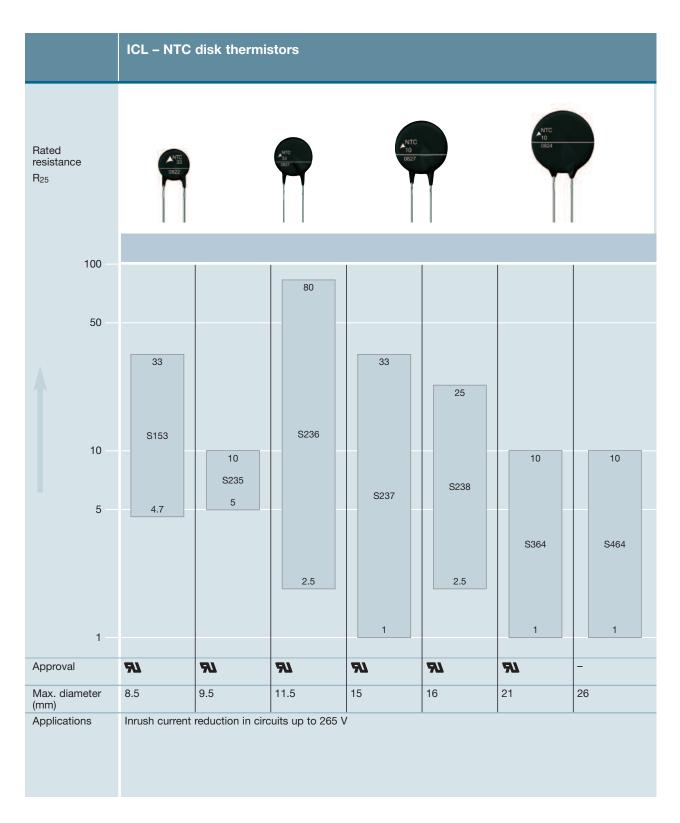
Switching spark gaps are powerful switches which can transmit capacitively stored energy with low losses. They have switch-through times in the region of nanoseconds

and thus allow brief high-energy pulses to be generated by means of discharges from inductive loads.

### CeraDiodes



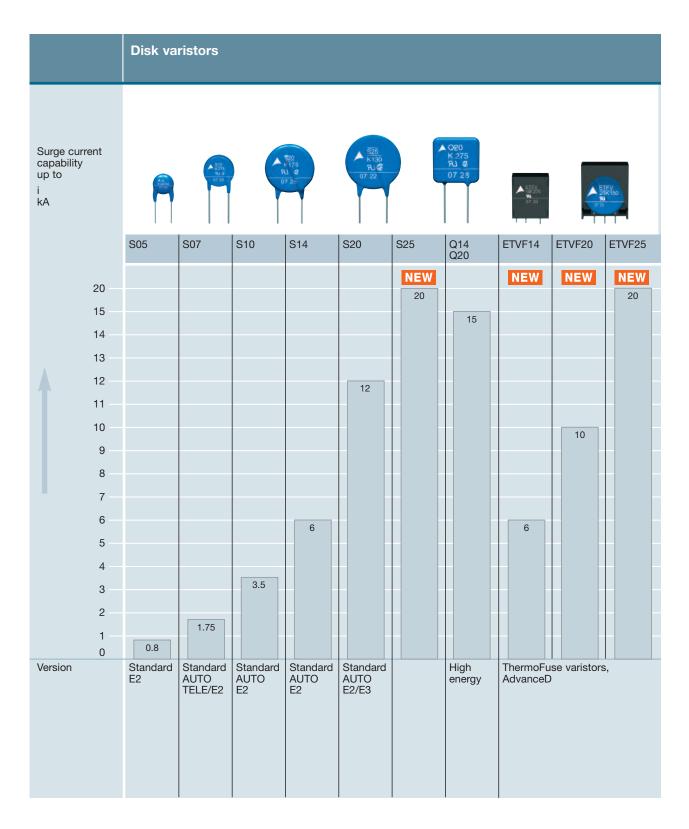
IT products and consumer electronics are becoming increasing complex and thus more susceptible to ESD. CeraDiodes can solve this problem simply and


economically. Compared to TVS diodes, they offer cost savings of up to 50%, are up to 80% smaller while offering equal or better performance.

# Ceramic Transient Voltage Suppressors (CTVS)

|                    | Multila    | yer chip                              | varisto                       | ors                                                           |                                               | ESD/E<br>filters         | МІ                        | SMD disk<br>varistors (CU)                         | SHCV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|--------------------|------------|---------------------------------------|-------------------------------|---------------------------------------------------------------|-----------------------------------------------|--------------------------|---------------------------|----------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                    | =          |                                       | SMD                           |                                                               |                                               | SMD                      |                           | SMD                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                    | į          | Standard Special tolerance Automotive |                               |                                                               |                                               | iii                      | ii<br>                    | ▲ 4032<br>S60A<br>0826                             | SPOSCHE A MICES OF THE PROPERTY OF THE PROPERT |
|                    | Standard   | Special tolerance                     | Automoti                      | ve                                                            | Telecom                                       | Audio                    | RC                        | Housed                                             | Leaded                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                    |            |                                       |                               |                                                               |                                               | NE                       | W                         |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                    | 2220       | 1200 pF                               | 2220                          | 25 J                                                          |                                               |                          | 290 MHz                   | 1200 A                                             | 4.7 μF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| A                  | 1812       |                                       | 1812                          |                                                               |                                               |                          |                           |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                    | 1210       |                                       | 1210                          | W <sub>LD</sub>                                               |                                               |                          |                           | I <sub>surge,max</sub>                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                    | 1206       | С                                     | 1206                          |                                                               |                                               |                          | f <sub>cut</sub> -off,min |                                                    | С                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                    | 0805       |                                       | 0805                          |                                                               |                                               |                          |                           | 100 A                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                    | 0603       |                                       | 0603                          | 1 J                                                           |                                               |                          | 80 MHz                    |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                    | 0402       |                                       |                               |                                                               | I <sub>surge,max</sub>                        | f <sub>cut-off,min</sub> |                           |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                    | 0201       | 0.6 pF                                |                               |                                                               | 45 A                                          | 10 MHz                   |                           |                                                    | 220 nF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Parameter          | EIA size   | Capaci-<br>tance C                    | EIA size                      | Max. load<br>dump<br>energy<br>W <sub>LD</sub><br>(10 pulses) | Max. surge<br>current<br>i (10x)<br>10/700 μs | Minimum<br>cut-off-fr    | ı<br>equency              | Maximum<br>surge current<br>8/20 μs                | Capacitance C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Version            |            | CC, LC,<br>HS, RF                     | Standard<br>AUTO<br>CC, LC, I |                                                               | EIA size<br>1812                              |                          |                           | Standard<br>AUTO (load dump,<br>jump starts), TELE | SR1 (EIA size 1812)<br>SR2 (EIA size 2220)<br>SR6 (EIA size 1206)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| CC = Controlled of | apacitance | e, LC = Lo                            | w capacita                    | ance, HS =                                                    | High-spe                                      | ed, HT =                 | High temp                 | erature, RF = Radio                                | frequency                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

Ceramic transient voltage suppressors (CTVS) are voltagedependent resistors with a symmetrical V/I characteristic whose resistance decreases with increasing voltage. Because of their application as overvoltage protection devices, they are also often referred to as transient voltage suppressors on silicon basis. EPCOS ceramic transient voltage suppressors (CTVS) have proven to be excellent protective devices because of their application flexibility and high reliability.


# Inrush Current Limiters (ICL)

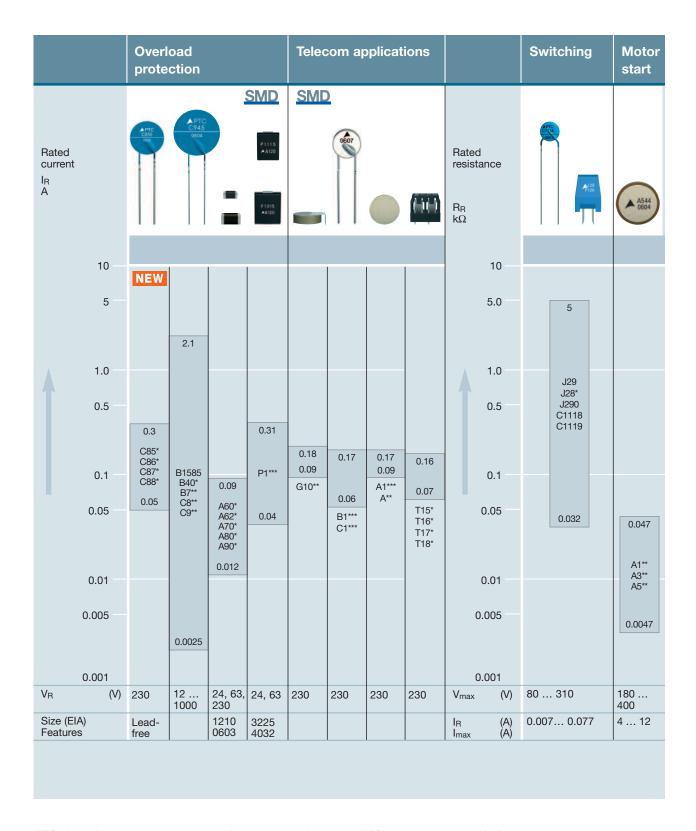


Many items of equipment like switch-mode power supplies, electric motors or transformers exhibit excessive inrush currents when they are turned on. The thermistor limits the current at turn-on by its relatively high cold resistance. As a result of the load current the thermistor heats up and reduces its resistance.

ICLs are able to effectively handle higher inrush currents than fixed resistors with the same power consumption. They thus provide protection from undesirably high inrush currents at switch-on and offers a fairly low resistance during continuous operation.


### Metal Oxide Varistors

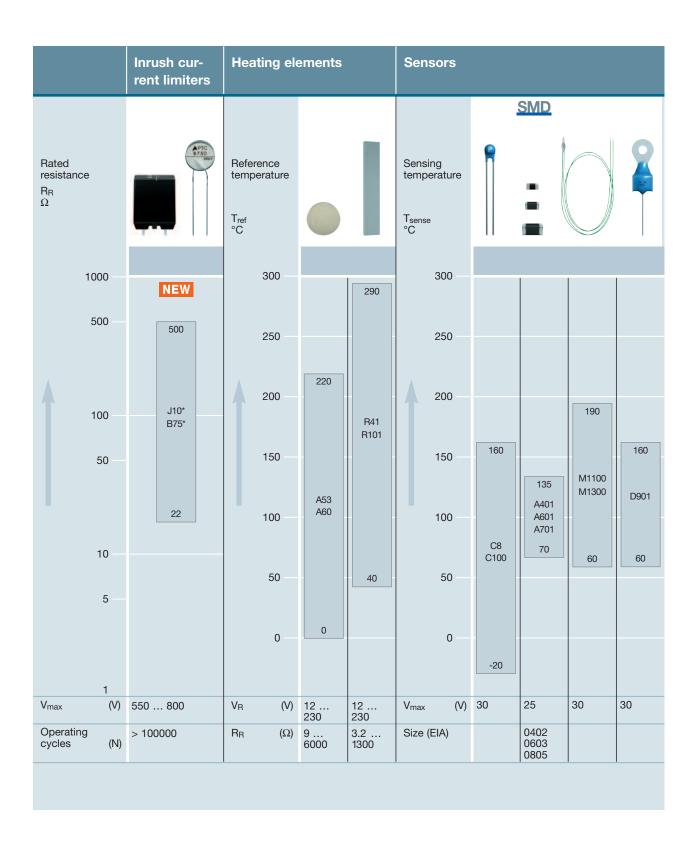



Metal oxide varistors SIOV are voltage-dependent resistors with symmetrical V/I characteristic.

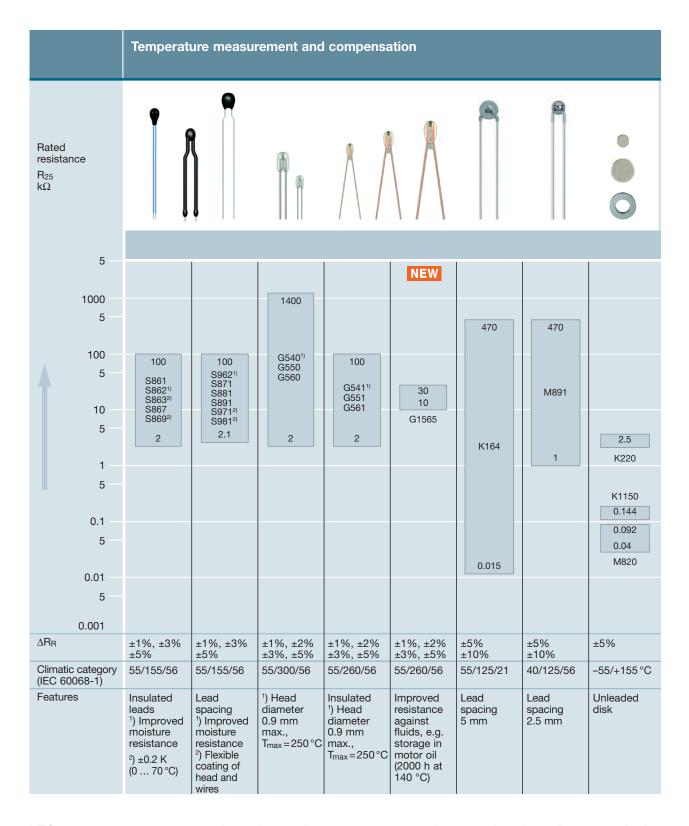
Consequently, varistors provide protection against all kinds of overvoltage and prevent electronic equipment from being damaged.

### **Metal Oxide Varistors**




### **PTC Thermistors**

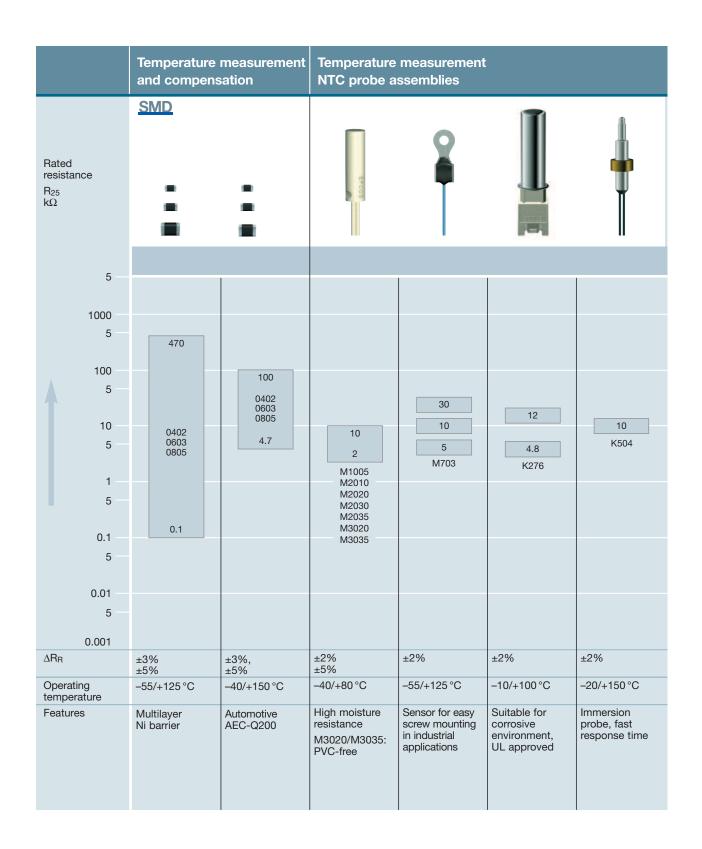



PTC thermistors are temperature-dependent resistors. They measure and control temperatures, protect against overload and serve as heating elements.

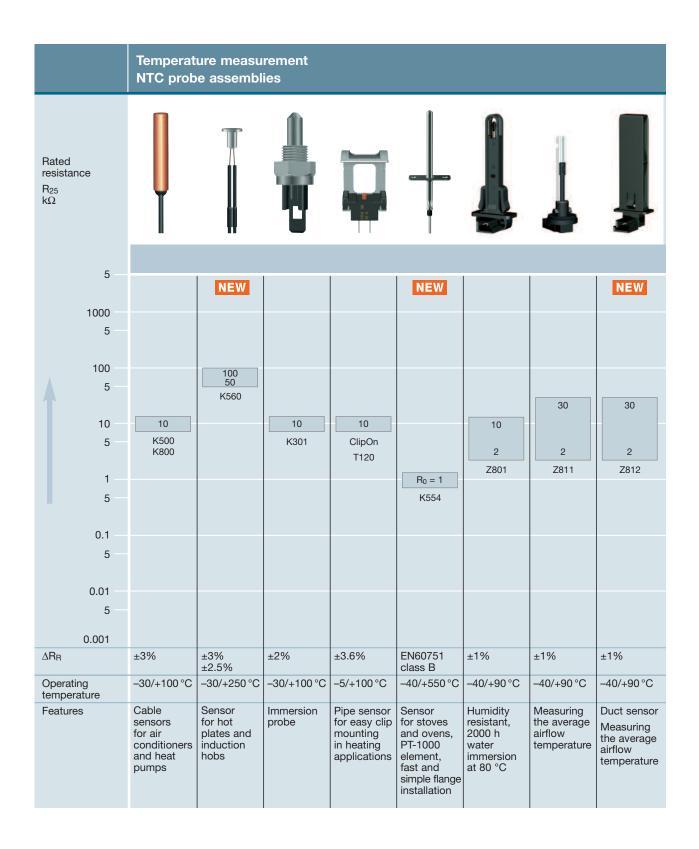
PTC switches are used in lighting systems, starter circuits for (compressor) motors and for degaussing color picture tubes.

### **PTC Thermistors**




### **NTC Sensors**




NTC sensors are temperature-dependent resistors which reduce their resistance as temperature increases. They are used particularly for precise temperature

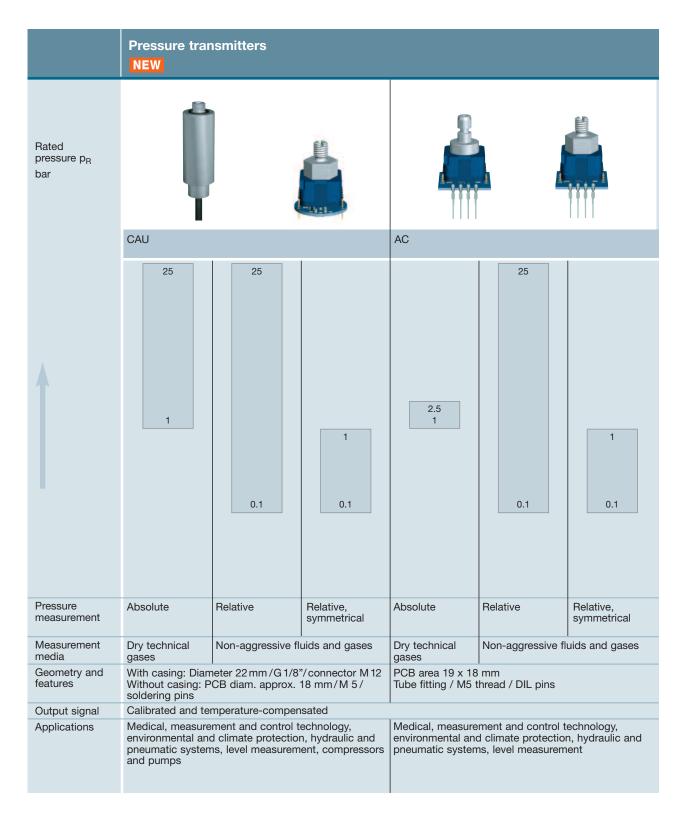
measurement in automotive, domestic, communication and industrial electronics.

### **NTC Sensors**



### **NTC Sensors**




### **Pressure Sensors and Transmitters**

|                                         | Pressure<br>NEW                           | e sensor (                | chips                                     |                                      |                                           |                                           | Pressure transducers NEW                                                                                                                                                                 |  |
|-----------------------------------------|-------------------------------------------|---------------------------|-------------------------------------------|--------------------------------------|-------------------------------------------|-------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|                                         | SMD                                       |                           |                                           |                                      |                                           | SMD                                       |                                                                                                                                                                                          |  |
| Rated<br>pressure p <sub>R</sub><br>bar |                                           | #E                        |                                           | M it                                 |                                           |                                           |                                                                                                                                                                                          |  |
|                                         | AE2<br>C41                                | AE2<br>C27                |                                           | AE2<br>C28                           |                                           | C29<br>wet media                          | AK2                                                                                                                                                                                      |  |
|                                         | 0.06<br>0.025                             | 1 0.25                    | 0.1                                       | 25                                   | 2.5                                       | 10                                        | 0.025                                                                                                                                                                                    |  |
| Pressure<br>measurement                 | Relative,<br>back side                    | Absolute, front side      | Relative,<br>back side                    | Absolute/<br>relative,<br>front side | Relative,<br>back side                    | Absolute,<br>back side                    | Relative                                                                                                                                                                                 |  |
| Measurement<br>media                    | Non-<br>aggressive<br>fluids and<br>gases | Dry<br>technical<br>gases | Non-<br>aggressive<br>fluids and<br>gases | Dry<br>technical<br>gases            | Non-<br>aggressive<br>fluids and<br>gases | Non-<br>aggressive<br>fluids and<br>gases | Non-aggressive fluids and gases                                                                                                                                                          |  |
| Geometry and features                   | 5 x 5 (mm)                                | 3 x 3 (mm)                |                                           | 2 x 2 (mm)                           |                                           | 2.7 x 2.2<br>(mm)                         | 14 x 15 (mm)<br>M5, tube fitting                                                                                                                                                         |  |
| Output signal                           | Not calibra                               | ted, not tem              | perature-con                              | npensated                            |                                           |                                           |                                                                                                                                                                                          |  |
| Applications                            |                                           |                           | easurement<br>ate protectio               | and control                          | technology,                               |                                           | Automotive, medical, measurement<br>and control technology, environmen-<br>tal and climate protection, hydraulic<br>and pneumatic systems, level mea-<br>surement, compressors and pumps |  |

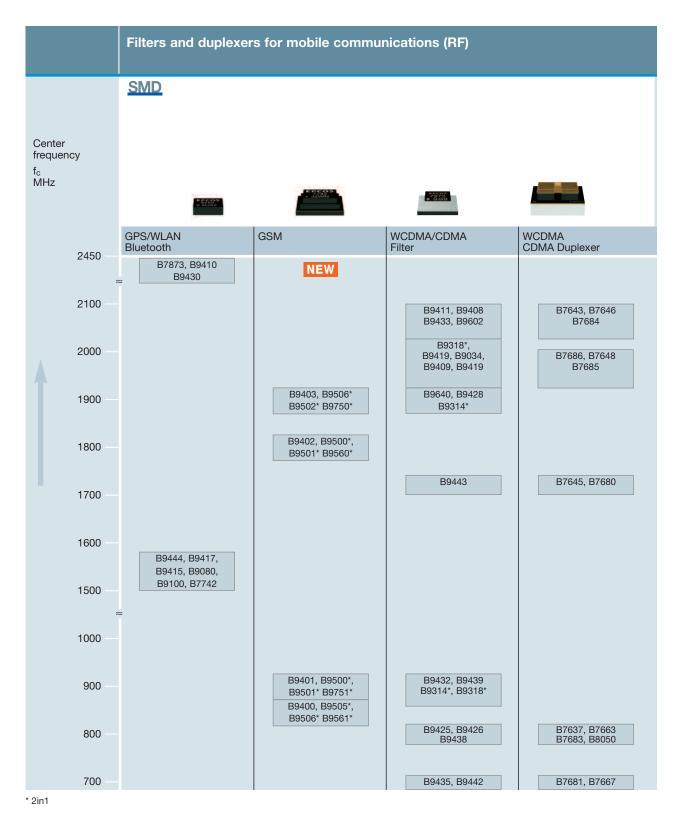
Pressure sensor chips consist of a piezoresistive silicon element with anodically bonded glass base. Relative pressure sensor chips with pressure to front and back side as well as absolute pressure sensor chips with pressure to front and back side are available.

Pressure transducers with metal-plastic package are based on the pressure sensor chips. The bridge signal is available uncalibrated and without temperature compensation.


### **Pressure Sensors and Transmitters**

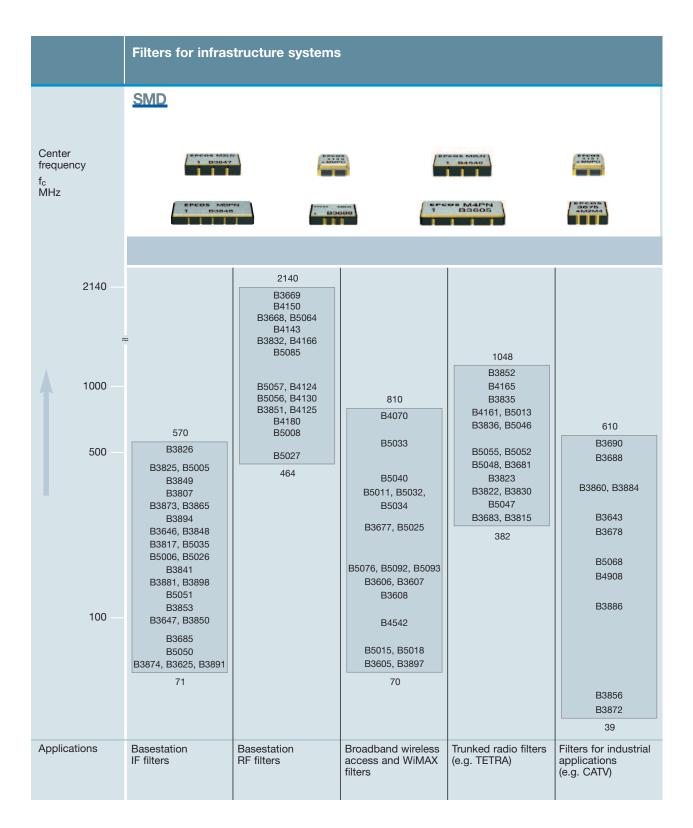


Pressure transmitters are extended by a signal evaluation module and supplied with and without stainless steel casing.

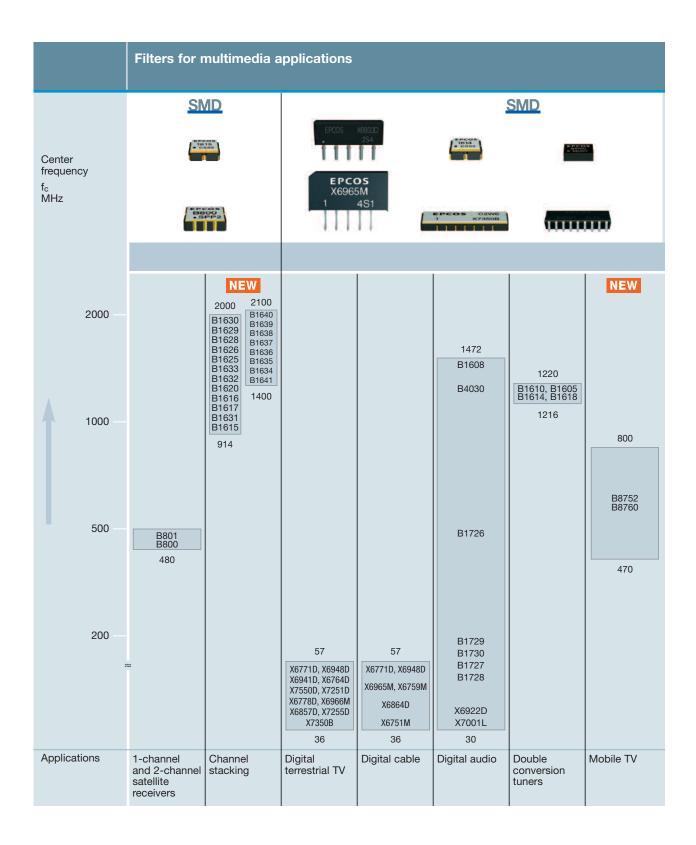

They represent temperature compensated and calibrated precision pressure sensors.

### Piezo Components

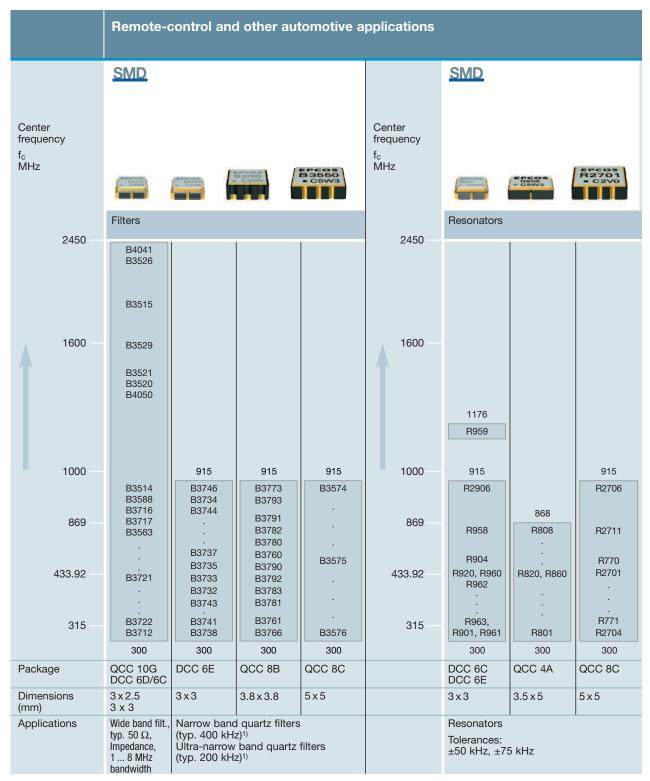



Multilayer piezo actuators are applied in state-of-the-art Diesel and gasoline injection systems, enabling improved engine performance as well as a reduction of emissions and fuel savings. However, fast response and unrivalled precision are making piezo actuators likewise attractive for a number of further mechatronic tasks.

EPCOS is a leading supplier of customer specific multilayer piezo actuator solutions. With many years of experience supplying the automotive industries at highest quality levels, EPCOS provides solutions in silver/palladium as well as copper technology.

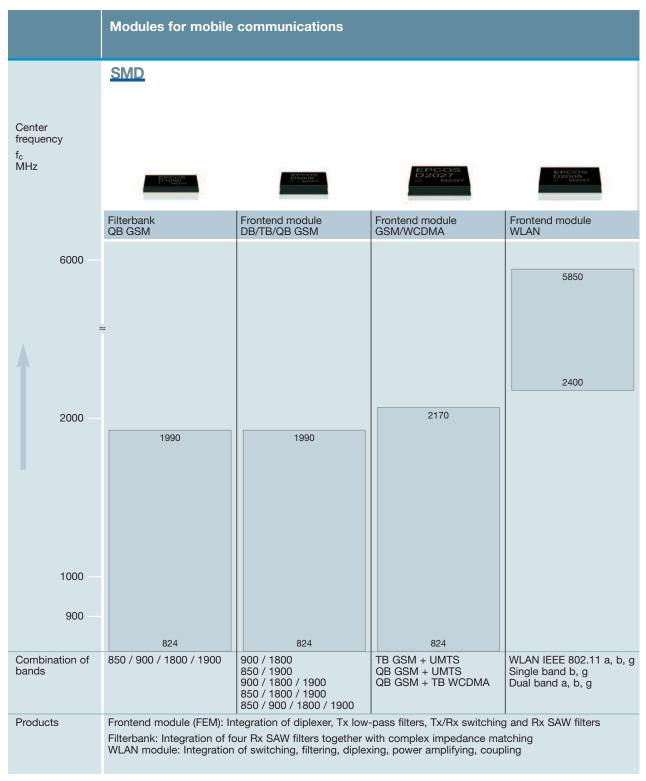



Surface acoustic wave components are electronic components in which piezoelectric effects are utilized to produce band-pass characteristics.


Their compact size qualifies SAW filters not only for use in mobile phones. In all other wireless communications systems too, they contribute to boosting the growing trend for miniaturisation and integration.



Surface acoustic wave filters play a key role in the infrastructure systems of modern telecommunications. Because of their special features, these products are increasingly being used in various infrastructure systems such as mobile phone base stations, wireless local loop and trunked radio systems, or cable TV networks.




|                                                          | Filters f            | or multimedia a                                                           | pplications                                |                                                                                    |                                                  |                                     |
|----------------------------------------------------------|----------------------|---------------------------------------------------------------------------|--------------------------------------------|------------------------------------------------------------------------------------|--------------------------------------------------|-------------------------------------|
| Inter-<br>mediate<br>frequency<br>f <sub>IF</sub><br>MHz | EPCOS                | N1952D<br>254                                                             | EPCOS<br>K9650M<br>1 4P1                   | (mm)                                                                               | SMD                                              | ж <b>сов</b> саме<br><b>х</b> 73008 |
|                                                          | Standard*)           |                                                                           |                                            |                                                                                    |                                                  |                                     |
| 38.0                                                     | D/K                  | K2959M<br>K2983M                                                          | K3964M                                     | K9351M<br>K9358M                                                                   |                                                  |                                     |
|                                                          | Multi-<br>standard   | K7253M <sup>1)</sup><br>(B/G, D/K, I+M/N)                                 | K7262D <sup>1)</sup><br>(B/G, D/K, I+M/N)  | K9655D <sup>1)</sup><br>(B/G, D/K, I+M/N)                                          | K3567D<br>(B/G, D/K)                             |                                     |
| 38.9                                                     | B/G                  | G1865M<br>G1975M<br>G1985M                                                | G3956M                                     | G9353M                                                                             |                                                  | G4963D                              |
|                                                          | Multi-<br>standard   | K7252M <sup>1)</sup> (B/G, D/K + M/N) K2966M (B/G, D/K) K2982M (B/G, D/K) |                                            | K9653D <sup>1)</sup> (B/G, D/K, L, I+M/N) K9656M <sup>1)</sup> (B/G, D/K, L, I+L') | K3565M<br>(B/G, D/K)                             | K4960D (D/K)                        |
| 45.75                                                    | M/N                  | M1867D<br>M1971M, M1871M                                                  | M3953M<br>M3954D                           | M9370M                                                                             | M3575D<br>M3565M                                 | M4952M                              |
| 58.75                                                    | М                    | N1952D                                                                    |                                            |                                                                                    | N3561M<br>N3564D                                 |                                     |
| Applications                                             |                      | Intercarrier filters                                                      | Video filters                              | Audio filters                                                                      | Quasi/split<br>sound filters                     | Vestigial sideband filters          |
| 1) 2-channel filter/                                     | *) L: Frar<br>B: Aus |                                                                           | astern standard, Ch<br>Germany, Europe (7, | /8 MHz) M/N: FC                                                                    | eat Britain, Ireland, S<br>C, America<br>can/FCC | South Africa                        |



<sup>1)</sup> Usable bandwidth (including temperature shift and production tolerances)

### **RF Modules**



LTCC (low-temperature co-fired ceramics)

Trends in mobile radio mean that the conventional cell-phone is gradually turning into a multimedia terminal. This in turn presents enormous challenges when it comes to

the miniaturization and functional integration of electronic components. EPCOS' answer to this is RF modules based on LTCC technology.

# Subject Index

| A                                      |            | EMI suppression capacitors          | 15, 2         |
|----------------------------------------|------------|-------------------------------------|---------------|
| AC motor run capacitors                | 16         | EMP protection                      | 51, 53, 5     |
| AC power line protection               | 61         | EP, EPX, EPO cores                  | 2             |
| active sensors                         | 67, 68     | EQ cores                            | 3             |
| ADSL interface transformers            | 46         | ER cores                            | 30, 3         |
| aluminum electrolytic capacitors       | 6 – 9      | ESD protection                      | 22, 53, 57, 5 |
| Alu-X                                  | 7-9        | ETD cores                           | 3             |
| arrays                                 | 23, 57, 58 | EV cores                            | 3             |
| arrester hybrid                        | 54         | F                                   |               |
| arresters                              | 53 – 55    | ·                                   |               |
| audio filters                          | 72, 73     | frame core chokes                   | 4             |
|                                        | 12, 10     | feedthrough capacitors              | 23, 4         |
| В                                      |            | feedthrough filters                 | 4             |
| basestation filters                    | 71         | ferrite materials                   | 2             |
| block varistors                        | 61         | ferrites and accessories            | 26 – 3        |
|                                        | 01         | film capacitors                     | 10 – 1        |
| C                                      |            | filterbank                          | 7             |
| capacitors for power factor correction | 17         | filter cabinets                     | 5             |
| CeraDiodes                             | 57         | filters                             |               |
| ceramic capacitors                     | 20 – 24    | - EMC                               | 49 – 5        |
| ceramic transient voltage suppressors  | 58         | - for shielded rooms                | 5             |
| chokes                                 | - 00       | - surface acoustic wave             | 70 – 7        |
| - current-compensated                  | 43, 44     | frontend modules                    | 7             |
| - customized                           | 48         | 11                                  |               |
| - data and signal lines                | 40, 41     | <u>H</u>                            |               |
| - data and signal lines<br>- dv/dt     | 50         | heating elements                    | 6             |
|                                        | 42 – 44    | HQF, multilayer ceramic capacitors  | 2             |
| – power line<br>– RF                   | 39         | 1                                   |               |
|                                        | 48         | <u> </u>                            |               |
| - specific<br>- VHF                    |            | I core chokes                       | 4             |
|                                        | 39         | I cores                             | 30, 3         |
| CombiSuppressor                        | 11         | inductors                           | 35 – 4        |
| CTVS                                   | 58         | infrastructure systems, filters for | 7             |
| current sense transformers             | 48         | inrush current limiters (ICL)       | 59, 6         |
| D                                      |            | intercarrier filters                | 7             |
|                                        | 40.41      | interface transformers              | 4             |
| data and signal line chokes            | 40, 41     | ISDN transformers                   | 4             |
| D core chokes                          | 50.00      |                                     |               |
| disk varistors                         | 58, 60     | <u>L</u>                            |               |
| double-aperture cores                  | 34         | LAN modules                         | 4             |
| duplexers                              | 70         | low-profile                         |               |
| dv/dt chokes                           | 50         | - E, ER, EQ cores                   | 3             |
| E                                      |            | - inductors                         | 3             |
|                                        | 44         | - RM cores                          | 2             |
| E core chokes                          |            | LTCC technology                     | 7             |
| E cores                                | 29         |                                     |               |
| EFD cores                              | 32         | M                                   |               |
| ELP cores                              | 30         | magnetics modules                   | 4             |
| EMC                                    | 40 54      | metal oxide varistors               | 60, 6         |
| - filters                              | 49 – 51    | MFP capacitors                      | 1             |
| - laboratory                           | 52         | MiniBlue                            | 1             |
| - protection 23, 35, 37, 39 -          |            | MKP capacitors                      | 12, 1         |
| – services                             | 52         | MKT capacitors                      | 10, 1         |
| EMI filters                            | 58         |                                     |               |

# Subject Index

| MLSC, multilayer ceramic capacitors | 22         | S                                 |                    |
|-------------------------------------|------------|-----------------------------------|--------------------|
| mobile communications               | 70, 75     | satellite receivers, filters for  | 72                 |
| modules                             | 45, 75     | sensors                           | 63 – 68            |
| MotorCap                            | 16         | SHDSL interface transformers      | 40                 |
| motor run capacitors                | 16         | SIFERRIT                          | 2                  |
| motor start PTC                     | 62         | SIFI                              | 50                 |
| multilayer ceramic capacitors       | 20 – 24    | SilverCap                         | 1(                 |
| multilayer chip varistors           | 58         | SIMID                             | 3                  |
| multimedia, filters for             | 72, 73     | SineFormer                        | 50                 |
| N                                   |            | sine-wave chokes                  | 42                 |
|                                     |            | SIOV                              | 60, 6 <sup>-</sup> |
| NTC disk thermistors                | 59         | SMT inductors                     | 3                  |
| NTC probe assemblies                | 65, 66     | SMT power inductors               | 36, 37             |
| NTC sensors                         | 64 – 66    | strap varistors                   | 6.                 |
| 0                                   |            | surface acoustic wave components  | 70 – 74            |
| output filters                      | 50         | surge arresters                   | 53 – 5             |
| overload protection                 | 62         | switching PTC                     | 62                 |
| overvoltage protection              | 58, 60, 61 | switching spark gaps              | 5                  |
| P                                   | 33, 33, 31 | Т                                 |                    |
| PCH cores                           | 28         | temperature compensation          | 64, 6              |
| P cores                             | 28         | temperature measurement           | 64 – 6             |
| PhaseCap                            | 17         | thermistors                       | 59, 62 – 6         |
| PhiCap                              | 17         | ThermoFuse                        | 6                  |
| piezo actuators                     | 69         | toroidal chokes                   | 43, 4              |
| olanar cores                        | 30         | toroids                           | 33, 3              |
| PM cores                            | 27         | transformers                      | 45 – 4             |
| pot core halves (PS cores)          | 28         | transponder coils                 | 3                  |
| powder core chokes                  | 42         | trunked radio filters             | 7                  |
| power capacitors                    | 17 – 19    | TV applications, filters for      | 7:                 |
| oower factor correction             | 12, 17, 42 |                                   |                    |
| power inductors                     | 36, 37     | U                                 |                    |
| power line chokes                   | 42 – 44    | U core choke                      | 4                  |
| PQ cores                            | 31         | U cores                           | 3:                 |
| oressure sensors                    | 67         | V                                 |                    |
| pressure transducers                | 67         | V                                 |                    |
| oressure transmitters               | 68         | varistors                         | 58, 60, 6          |
| PS cores                            | 28         | VDSL interface transformers       | 4                  |
| PTC thermistors                     | 62, 63     | vestigial sideband filters        | 7:                 |
| - 10 thermistors                    | 02, 03     | VHF chokes                        | 3                  |
| Q                                   |            | video filters                     | 7                  |
| Quasi/split sound filters           | 73         | W                                 |                    |
| R                                   |            | wireless access and WIMAX filters | 7                  |
| remote-control applications         | 74         | WLAN modules                      | 7:                 |
| resonators                          | 74         | X                                 |                    |
| RF chokes                           | 39         |                                   | 1:                 |
| RF modules                          | 75         | X capacitors<br>xDSL transformers | 4                  |
| RF transformers                     | 48         | ADSE transionners                 | 40                 |
| ring core chokes                    | 43         | Υ                                 |                    |
| RM cores                            | 26         | Y capacitors                      | 1:                 |
| RM LP cores                         | 26         | ι σαρασίτοισ                      |                    |

### Important Notes

The following applies to all products named in this publication:

- 1. Some parts of this publication contain statements about the suitability of our products for certain areas of application. These statements are based on our knowledge of typical requirements that are often placed on our products in the areas of application concerned. We nevertheless expressly point out that such statements cannot be regarded as binding statements about the suitability of our products for a particular customer application. As a rule, EPCOS is either unfamiliar with individual customer applications or less familiar with them than the customers themselves. For these reasons, it is always ultimately incumbent on the customer to check and decide whether an EPCOS product with the properties described in the product specification is suitable for use in a particular customer application.
- 2. We also point out that in individual cases, a malfunction of electronic components or failure before the end of their usual service life cannot be completely ruled out in the current state of the art, even if they are operated as specified. In customer applications requiring a very high level of operational safety and especially in customer applications in which the malfunction or failure of an electronic component could endanger human life or health (e.g. in accident prevention or life-saving systems), it must therefore be ensured by means of suitable design of the customer application or other action taken by the customer (e.g. installation of protective circuitry or redundancy) that no injury or damage is sustained by third parties in the event of malfunction or failure of an electronic component.
- The warnings, cautions and product-specific notes must be observed.

- 4. In order to satisfy certain technical requirements, some of the products described in this publication may contain substances subject to restrictions in certain jurisdictions (e.g. because they are classed as hazardous). Useful information on this will be found in our Material Data Sheets on the Internet (www.epcos.com/material). Should you have any more detailed questions, please contact our sales offices.
- 5. We constantly strive to improve our products. Consequently, the products described in this publication may change from time to time. The same is true of the corresponding product specifications. Please check therefore to what extent product descriptions and specifications contained in this publication are still applicable before or when you place an order.

We also reserve the right to discontinue production and delivery of products. Consequently, we cannot guarantee that all products named in this publication will always be available.

The aforementioned does not apply in the case of individual agreements deviating from the foregoing for customer-specific products.

- Unless otherwise agreed in individual contracts, all orders are subject to the current version of the "General Terms of Delivery for Products and Services in the Electrical Industry" published by the German Electrical and Electronics Industry Association (ZVEI).
- 7. The trade names EPCOS, BAOKE, Alu-X, CeraDiode, CSSP, CTVS, DSSP, MiniBlue, MKK, MLSC, MotorCap, PCC, PhaseCap, PhaseMod, SIFERRIT, SIFI, SIKOREL, SilverCap, SIMDAD, SIMID, SineFormer, SIOV, SIP5D, SIP5K, ThermoFuse, WindCap are trademarks registered or pending in Europe and in other countries. Further information will be found on the Internet at www.epcos.com/trademarks.

78 | © EPCOS AG 2008

#### Get in Contact

#### **Europe**

Austria, Bulgaria, Greece, Montenegro, Romania, Serbia EPCOS OHG

Vienna

T +43 51 70 72 56 30 F +43 51 70 75 56 45 sales.csee@epcos.com

#### Czech Republic

EPCOS s.r.o. Prague T +420 2 33 03 22 81 F +420 2 33 03 22 89 sales.czech@epcos.com

**EPCOS Nordic OY** Espoo T +358 10 5 11 32 00 F +358 10 5 11 22 85 sales.nordic@epcos.com

#### France, Belgium, Luxembourg, Malta, Netherlands

**EPCOS SAS** Saint-Denis/France T +33 1 49 46 67 89 F +33 1 49 46 67 67 sales.france@epcos.com

#### Germany, Liechtenstein, Switzerland **EPCOS AG**

Customer Service Munich T (D) 0180 500 33 48

(0.14 Euro/min.) (CH) 08 48 37 26 71 F +49 89 63 62 80 10 sales.germany@epcos.com

Hungary EPCOS Elektronikai Alkatrész Kft. Budapest T +36 1 436 07 20 F +36 1 436 07 21 sales.hungary@epcos.com

Siemens S. p. A. Settore EPCOS Milan T +39 02 24 36 42 65

F +39 02 24 36 44 24 sales.italy@epcos.com

#### Poland, Latvia, Lithuania Siemens Sp.z.o.o

**EPCOS Division** Warsaw T +48 22 8 70 91 51 F +48 22 8 70 91 59

sales.poland@epcos.com

#### Portugal

EPCOS 2 Portugal LDA Évora T +351 91 75 67 927 F +351 21 49 33 476

sales.portugal@epcos.com

#### Russia, Belarus, Kazakhstan, Moldavia, Ukraine

OOO Siemens **EPCOS Division** Moscow

T +7 495 7 37 24 17 / 18 F +7 495 7 37 23 46 sales.cis@epcos.com

#### Slovakia

**EPCOS Sales Representative** Dolný Kubín T +42 1 43 5 82 36 73

F +42 1 43 5 82 37 33 sales.slovakia@epcos.com

#### Slovenia, Croatia, Bosnia & Herzegovina

EPCOS Sales Representative Škofljica/Slovenia T +386 599 56 35 3

F +386 599 56 35 4 sales.slovenia@epcos.com

#### Spain Siemens S.A. **EPCOS Division**

Getafe +34 91 514 80 00 F +34 91 514 70 14 sales.iberia@epcos.com

#### Sweden, Estonia, Iceland, Denmark, Norway EPCOS Nordic AB

Kista/Sweden T +46 8 4 77 27 00 +46 8 4 77 27 01 sales.nordic@epcos.com

#### Turkey **EPCOS AG**

Liaison Office Istanbul

T +90 216 5 69 81 01 F +90 216 4 64 07 56 sales.turkey@epcos.com

#### United Kingdom, Ireland EPCOS UK Ltd.

Bracknell T +44 13 44 38 15 10

F +44 13 44 38 15 12 sales.uk@epcos.com

Afghanistan, Iran, Iraq, Jordan, Lebanon, Syria EPCOS AG

Liaison Office Istanbul/Turkey T +90 216 5 69 81 01 F +90 216 4 64 07 56 sales.turkey@epcos.com

#### China

EPCOS (Shanghai) Ltd. Shanghai T +86 21 33 02 46 20 F +86 21 63 91 68 89 sales.cn@epcos.com

#### Hong Kong

**EPCOS Limited** Hong Kong

T +85 2 31 01 56 00 +85 2 31 01 56 46 sales.cn@epcos.com

#### India, Bahrain, Bangladesh, Kuwait, Nepal, Oman, Pakistan, Qatar, Saudi Arabia, Sri Lanka, United Arab **Emirates**

EPCOS India Private Ltd. Bangalore T +91 80 40 39 06 15 F +91 80 40 39 06 03 sales.in@epcos.com

Nisko Projects Electronics & Communications (1999) Ltd. Tel Aviv

T +972 37 65 73 00 F +972 37 65 73 33 sales.israel@epcos.com

#### Japan **EPCOS KK**

Yokohama T +81 45 4 78 72 00 F +81 45 4 78 72 25 sales.jp@epcos.com

#### Korea

**EPCOS Korea LLC** Seoul T +82 2 21 56 68 18 F +82 2 21 56 68 98

sales.kr@epcos.com

#### Malaysia

EPCÓS SDN. BHD. Kuala Lumpur T +60 3 79 60 81 80 F +60 3 79 60 81 82 sales.asean@epcos.com

#### **Philippines** Siemens Inc.

**EPCOS Division** Manila T +63 2 8 78 94 41 F +63 2 8 78 94 40 sales.asean@epcos.com

#### Singapore, Indonesia, Thailand, Vietnam EPCOS PTE LTD

Singapore T +65 68 41 20 11 F +65 67 44 69 92 sales.asean@epcos.com

#### EPCOS Taiwan Co. Ltd.

Taipei T +886 2 26 55 76 76 F +886 2 55 59 02 88 sales.tw@epcos.com

#### **Americas**

USA, Canada, Mexico EPCOS, Inc. Iselin, NJ, USA T +1 732 9 06 43 00 F +1 732 9 06 43 95 sales usa@encos com

#### South America EPCOS do Brasil Ltda. São Paulo

T +55 1 138 17 34 46 F +55 1 138 17 34 43 sales.br@epcos.com

#### Australia

#### Australia, New Zealand

**Flectronic Component** Solutions Pty Ltd Melbourne

T +61 3 85 61 19 99 F +61 3 95 74 70 55 sales.au@epcos.com

#### Republic of South Africa Electrocomp (PTY) Ltd.

Sandton

T +27 11 458 90 00 32 F +27 11 458 90 34 sales.southernafrica@epcos.com

Siemens I td **EPCOS** Division Cairo

T +202 3 333 36 69 F +202 3 333 36 07 sales.egypt@epcos.com

#### Morocco, Tunisia

EPCOS SAS Saint-Denis/France

79

T +33 1 49 46 67 89 F +33 1 49 46 67 67 sales.france@epcos.com

10/08

The addresses of our worldwide distributors and regional sales offices are available at www.epcos.com/sales

© EPCOS AG 2008, Corporate Center, P.O.Box 80 17 09, 81617 Munich, Germany, T +49 89 636 09, F +49 89 636 226 89 Reproduction, publication and dissemination of this publication and the information contained therein without EPCOS' prior express consent is prohibited.

© EPCOS AG 2008

